Sains Malaysiana 50(5)(2021): 1309-1320

http://doi.org/10.17576/jsm-2021-5005-11

 

Biosynthesis of Gold Nanoparticles (AuNPs) by Diopatra claparedii Grube, 1878 (Polychaeta: Onuphidae) and Its Antibacterial Activity

(Biosintesis Nanozarah Emas (AuNPs) daripada Diopatra claparedii Grube, 1878 (Polychaeta: Onuphidae) dan Aktiviti Antibakterianya)

 

PIONG CHONG HUAI1, NOOR ANIZA HARUN1,2*, ANGELINE UNG EE PEI1, MOHAMMAD ASYRAF ADHWA MASIMEN1, WAN IRYANI WAN ISMAIL1,3 & IZWANDY IDRIS4

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

2Advance NanoMaterials (ANOMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

3Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

4South China Sea Repository & Reference Centre, Institute of Oceanography & Environmental, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Received: 29 July 2020/Accepted: 5 October 2020

 

ABSTRACT

Gold nanoparticles (AuNPs) have gained attention as it possesses outstanding physicochemical properties, and utilised in variety of applications especially in biomedical and pharmaceutical. Majorly, AuNPs are produced by conventional methods (chemical and physical). However, these methods bring several drawbacks such as toxic, hazardous, low yield and non-environmental friendly. Hence, biosynthesis of AuNPs that compliance with ‘greener’ approach becomes vitals. In this study, marine tube worm of Diopatra claparedii (polychaetes) was employed as reducing agent in the biosynthesis of AuNPs. The biosynthesised of AuNPs by D. claparedii extract was successfully prepared under ambient temperature and normal atmospheric conditions. The formation of AuNPS was confirmed by the appearance of surface Plasmon resonance (SPR) bands around 540 to 560 nm characterized by UV-Vis spectroscopy. Scanning electron microscopy (SEM) showed that the AuNPs are mostly in agglomerated spherical like shapes with size ranging from 100 to 400 nm. Meanwhile, transmission electron microscopy (TEM) showed that the particles are in the size range from 25 to 60 nm, also mainly form in spherical like shape. The particle size of AuNPs in a range of 50-100 nm was showed by dynamic light scattering (DLS). Fourier-transform infrared (FTIR) spectrum of D. claparedii extract indicated the existence of several functional groups. Biosynthesised AuNPs also successfully gave inhibition on bacterial growth (Staphyloccus aureus, S. epidermidis, Escheratia coli, Salmonella typhi) through antibacterial assessment.

 

Keywords: Antibacterial; biosynthesis; Diopatra claparedii; gold nanoparticles; polychaete

 

ABSTRAK

Nanozarah emas (AuNP) telah mendapat perhatian kerana memiliki sifat fizikokimia yang luar biasa dan digunakan dalam berbagai aplikasi terutama dalam bidang bioperubatan dan farmaseutik. Sebahagian besarnya, AuNP dihasilkan dengan kaedah konvensional (kimia dan fizikal). Walau bagaimanapun, kaedah ini mempunyai beberapa kelemahan seperti toksik, berbahaya, memakan masa, kadar penghasilan yang rendah dan tidak mesra alam. Oleh itu, biosintesis AuNPs menggunakan pendekatan sintesis ‘hijau’ menjadi penting. Dalam kajian ini, cacing marin bertiub Diopatra claparedii telah digunakan sebagai agen penurun dalam biosintesis AuNPs. Biosintesis AuNPs oleh ekstrak D. claparedii telah berjaya disintesis dalam suhu normal dan dalam keadaan atmosfera biasa. Pembentukan AuNPs telah disahkan oleh puncak permukaan Plasmon resonans (SPR) sekitar 540 sehingga 560 nm yang dicirikan oleh spektroskopi UV-Vis. Mikroskopi elektron pengimbasan (SEM) menunjukkan bahawa AuNPs dihasilkan dalam bentuk sfera yang beraglomerat dalam saiz antara 100 hingga 400 nm. Sementara itu, mikroskopi elektron transmisi (TEM) menunjukkan bahawa AuNPs dihasilkan dalam saiz antara 25 hingga 60 nm, juga dalam bentuk sfera secara majoriti. Saiz zarah AuNPs dalam lingkungan 50-100 nm telah didedahkan oleh serakan cahaya dinamik (DLS). Spektrum inframerah transformasi Fourier (FTIR) D. claparedii menunjukkan kewujudan beberapa kumpulan berfungsi. Biosintesis AuNPs juga berjaya memberi keputusan terhadap perencatan bakteria (S. aureus, S. epidermidis, E. coli, S. typhi) melalui penilaian antibakteria.

 

Kata kunci: Antibakteria; biosintesis; Diopatra claparedii; nanozarah emas; poliket

 

REFERENCES

Abdel-Raouf, N., Al-Enazi, N.M. & Ibraheem, I.B.M. 2017. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterisation of their antibacterial activity. Arabian Journal of Chemistry 10(2): S3029-S3039.

Ahmad, T., Irfan, M., Bustam, M.A. & Bhattacharjee, S. 2016. Effect of reaction time on green synthesis of gold nanoparticles by using aqueous extract of Elaise guineensis (oil palm leaves). Procedia Engineering 148: 467-472.

Ahmad, T., Wani, I.A., Manzoor, N., Ahmed, J. & Asiri, A.M. 2013. Biosynthesis, structural characterisation and antimicrobial activity of gold and silver nanoparticles. Colloid and Surface B: Biointerfaces 107: 227-234.

Amendola, V., Pilot, R.M., Frasconi, M., Marago, O.M. & Lati, M.A. 2017. Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics: Condensed Matter 29(20): 203002.

Apte, M., Girme, G., Nair, R., Bankar, A., Kumar, A.R. & Zinjarde, S. 2013. Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Materials Letters 95: 149-152.

Carrillo-Cazares, A., Jiménez-Mancilla, N.P., Luna-Gutiérrez, M.A., Isaac-Olivé, K. & Camacho-López, M.A. 2017. Study of the optical properties of functionalized gold nanoparticles in different tissues and their correlation with the temperature increase. Journal of Nanomaterials 2017: Article ID. 3628970.

Correard, F., Maximova, K., Estève, M.A., Villard, C., Roy, M., Al-Kattan, M.A., Sentis, M., Gingras, M., Kabashin, A.V. & Braguer, D. 2014. Gold nanoparticles prepared by laser ablation in aquoues biocompatible solutions: Assessment of safety and biological identity for nanomedicine applications. International Journal of Nanomedicine 9: 5415-5430.

Daraee, H., Eatemadi, A., Abbasi, E., Aval, S.F., Kouhi, M. & Akbarzadeh, A. 2014. Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine and Biotechnology 44(1): 410-422.

Dzimitrowicz, A., Jamróz, P., diCenzo, G.C., Sergiel, I., Kozlecki, T. & Pohl, P. 2016. Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge. Arabian Journal of Chemistry 12(8): 4118-4130.

Freitas de Freitas, L., Varca, G.H.C., Batista, J.G.S. & Lugão, A.B. 2018. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials 8(11): 939-962.

Gatoo, M.A., Naseem, S., Mir Yasir, A., Mahmood Dar, A., Khusro, Q. & Zubair, S. 2014 Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed Research International 2014: 498420.

Glasby, C.J., Hutchings, P.A., Fauchald, K., Paxton, H., Rouse, G.W., Russell, C.W. & Wilson, R.S. 2000. Class polychaeta. In Polychaetes & Allies: The Southern Synthesis: Vol. Fauna of A, edited by Beesley, G.J.B., Ross, C.J. & Glasby, P.J. Melbourne: CSIRO Publishing. pp. 1-296.

Herizchi, R., Abbasi, E., Milani, M. & Akbarzadeh, A. 2014. Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology 44(2): 596-602.

Huang, H.L., Chen, J.K. & Houng, M.P. 2012. Using soft lithography to fabricate gold nanoparticle patterns for bottom-gate field effect transistors. Thin Solid Films 524: 304-308.

Hussain, N.S., Harun, N.A., Radzi, M.N.F.M., Idris, I. & Ismail, W.I.W. 2018. Biosynthesis of silver nanoparticles from marine polychaete Diopatra claparedii Grube, 1878. Jurnal Teknologi 80(6): 181-187.

Karimi, S., Moshaii, A., Abbasian, S. & Nikkhah, M. 2018. Surface plasmon resonance in small gold nanoparticles: Introducing a size-dependent plasma frequency for nanoparticles in quantum regime. Plasmonic 14(4): 851-860.

Kim, Y.J., Park, J., Jeong, H.S., Park, M., Baik, S., Lee, D.S., Rho, H., Kim, H., Lee, J.H., Kim, S.M. & Kim, Y.K. 2019. A seed-mediated growth of gold nanoparticles inside carbon nanotube fibers for fabrication of multifunctional nanohybrid fibers with enhanced mechanical and electrical properties. Nanoscale 11: 5295-5303.

Latha, D., Sampurnam, S., Arulvasu, C., Prabu, P., Govindaraju, K. & Narayanan, V. 2018. Biosynthesis and characterisation of gold nanoparticle from Justicia adhatoda and its catalytic activity. Materials Today: Proceedings 5(2): 8968-8972.

Lee, S.H., Jung, H.K., Kim, T.C., Kim, C.H., Shin, C.H., Yoon, T.S., Hong, A.R., Jang, H.S., & Kim, D.H.  2018. Facile method for the synthesis of gold nanoparticles using an ion coater. Applied Surface Science 434: 1001-1006.

Menon, S., Rajeshkumar, S. & Kumar, V.S. 2017. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3(4): 516-527.

Nadaf, N.Y. & Kanase, S.S. 2019. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arabian Journal of Chemistry 12(8): 4806-4814.

Ogarev, V.A., Rudoi, V.M. & Dement’eva, O.V. 2018. Gold nanoparticles: Synthesis, optical properties and application. Inorganic Materials: Applied Research 9(1): 134-140.

Onitsuka, S., Hamada, T. & Okamura, H. 2019. Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloid and Surface B: Biointerfaces 173: 242-248.

Paxton, H. 2002. Diopatra Audouin and Milne Edwards (Polychaeta: Onuphidae) from Thailand, Phuket. Thailand: Marine Biological Center Special Publication 24: 101-114.

Pei, A.U.E., Huai, P.C., Masimen, M.A.A., Ismail, W.I.W., Idris, I. & Harun, N.A. 2020.  Biosynthesis of gold nanoparticles (AuNPs) by marine baitworm Marphysa moribidii Idris, Hutchings and Arshad 2014 (annelida: polychaeta) and its antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology 11(1): 015001.

Ravindran, A., Chandran, P. & Khan, S.S. 2013. Biofunctionalized silver nanoparticles: Advances and prospects. Colloid and Surface B: Biointerfaces 105: 342-352.

Rengan, A.K., Bukhari, A.B., Pradhan, A., Malhotra, R., Banerjee, R., Srivastava, R. & De, A. 2015. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy cancer. Nano Letters 15(2): 842-848.

Saxena, U. & Goswami, P. 2012. Electrical and optical properties of gold nanoparticles: Applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing. Journal of Nanoparticle Research 14: 813.

Singh, P., Kim, Y.J., Zhang, D. & Yang, D.C. 2016 Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology 34(7): 588-599.

Singh, R., Sahu, S.K. & Thangaraj, M. 2014. Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens. Journal of Nanoparticles 2014(2): 1-7.

Soumya, M., Rajeshkumar, S. & Venkat, K.S. 2017. A review on biogenic synthesis of gold nanoparticles, characterization and its applications. Resource-Efficient Technologies 3(4): 516-527. 

Turkevich, J., Stevenson, P.C. & Hillier, J. 1953. The formation of colloidal gold. The Journal of Physical Chemistry 57(7): 670-673.

Yang, Y., Li, C., Yin, L., Liu, M., Wang, Z., Shu, Y. & Li, G. 2014. Enhanced charge transfer by gold nanoparticles at DNA modified electrode and its application to label-free DNA detection. ACS Applied Materials & Interfaces 6(10): 7579-7584.

Yang, Y., Wang, L., Wan, B., Gu, Y. & Li, X. 2019. Optically active nanomaterials for bioimaging and targeted therapy. Frontiers in Bioengineering and Biotechnology 7: 320-344.

Yeh, Y.C., Creran, B. & Rotello, V.M. 2012. Gold nanoparticles: Preparation, properties and applications in bionanotechnology. Nanoscale 4(6): 1871-1880.

Yuan, C.G., Huo, C., Yu, S. & Gui, B. 2017. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E: Low-Dimensional Systems and Nanostructures 85: 19-26.

Zawrah, M.F. & Abd El-Moez, S.I. 2011. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Science Journal 8(4): 37-44.

Zhang, V., Qu, Y., Shen, W., Wang, J., Li, H., Zhang, Z., Li, S. & Zhou, J. 2016. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloid and Surface A: Physicochemical and Engineering Aspects 497: 280-285.

 

*Corresponding author; email: nooraniza@umt.edu.my

 

 

 

previous