Sains Malaysiana 50(5)(2021):
1309-1320
http://doi.org/10.17576/jsm-2021-5005-11
Biosynthesis
of Gold Nanoparticles (AuNPs) by Diopatra
claparedii Grube, 1878 (Polychaeta: Onuphidae) and Its Antibacterial
Activity
(Biosintesis Nanozarah Emas (AuNPs) daripada Diopatra claparedii Grube, 1878
(Polychaeta: Onuphidae) dan Aktiviti Antibakterianya)
PIONG
CHONG HUAI1, NOOR ANIZA HARUN1,2*, ANGELINE UNG EE PEI1,
MOHAMMAD ASYRAF ADHWA MASIMEN1, WAN IRYANI WAN ISMAIL1,3 &
IZWANDY IDRIS4
1Faculty of Science and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu
Darul Iman, Malaysia
2Advance NanoMaterials (ANOMA)
Research Group, Faculty of Science and Marine Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
3Biological Security and
Sustainability Research Group, Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman,
Malaysia
4South China Sea Repository &
Reference Centre, Institute of Oceanography & Environmental, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
Received:
29 July 2020/Accepted: 5 October 2020
ABSTRACT
Gold nanoparticles (AuNPs) have gained attention as it
possesses outstanding physicochemical properties, and utilised in variety of
applications especially in biomedical and pharmaceutical. Majorly, AuNPs are
produced by conventional methods (chemical and physical). However, these
methods bring several drawbacks such as toxic, hazardous, low yield and
non-environmental friendly. Hence, biosynthesis of AuNPs that compliance with
‘greener’ approach becomes vitals. In this study, marine tube worm of Diopatra claparedii (polychaetes) was employed as reducing agent in the biosynthesis of AuNPs. The
biosynthesised of AuNPs by D. claparedii extract was successfully prepared under ambient temperature and normal
atmospheric conditions. The formation of AuNPS was confirmed by the appearance
of surface Plasmon resonance (SPR) bands around 540 to 560 nm characterized by
UV-Vis spectroscopy. Scanning electron microscopy (SEM) showed that the AuNPs
are mostly in agglomerated spherical like shapes with size ranging from 100 to
400 nm. Meanwhile, transmission electron microscopy (TEM) showed that the
particles are in the size range from 25 to 60 nm, also mainly form in spherical
like shape. The particle size of AuNPs in a range of 50-100 nm was showed by
dynamic light scattering (DLS). Fourier-transform infrared (FTIR) spectrum of D.
claparedii extract indicated the
existence of several functional groups. Biosynthesised AuNPs also successfully
gave inhibition on bacterial growth (Staphyloccus aureus, S. epidermidis,
Escheratia coli, Salmonella typhi) through antibacterial assessment.
Keywords: Antibacterial; biosynthesis; Diopatra claparedii;
gold nanoparticles; polychaete
ABSTRAK
Nanozarah emas (AuNP) telah mendapat perhatian kerana
memiliki sifat fizikokimia yang luar biasa dan digunakan dalam berbagai
aplikasi terutama dalam bidang bioperubatan dan farmaseutik. Sebahagian
besarnya, AuNP dihasilkan dengan kaedah konvensional (kimia dan fizikal). Walau
bagaimanapun, kaedah ini mempunyai beberapa kelemahan seperti toksik,
berbahaya, memakan masa, kadar penghasilan yang rendah dan tidak mesra alam.
Oleh itu,
biosintesis AuNPs menggunakan pendekatan sintesis ‘hijau’ menjadi penting.
Dalam kajian ini, cacing marin bertiub Diopatra claparedii telah digunakan sebagai
agen penurun dalam biosintesis AuNPs. Biosintesis AuNPs oleh ekstrak D.
claparedii telah berjaya disintesis dalam suhu normal dan dalam keadaan
atmosfera biasa. Pembentukan AuNPs telah disahkan oleh puncak permukaan Plasmon resonans (SPR) sekitar 540 sehingga 560 nm yang dicirikan oleh spektroskopi UV-Vis. Mikroskopi elektron pengimbasan (SEM) menunjukkan bahawa AuNPs dihasilkan dalam bentuk sfera yang beraglomerat
dalam saiz antara 100 hingga 400 nm. Sementara itu, mikroskopi elektron
transmisi (TEM) menunjukkan bahawa AuNPs dihasilkan dalam saiz antara 25 hingga
60 nm, juga dalam bentuk sfera secara majoriti. Saiz zarah AuNPs dalam
lingkungan 50-100 nm telah didedahkan oleh serakan cahaya dinamik (DLS).
Spektrum inframerah transformasi Fourier (FTIR) D. claparedii menunjukkan
kewujudan beberapa kumpulan berfungsi. Biosintesis AuNPs juga berjaya memberi
keputusan terhadap perencatan bakteria (S. aureus, S. epidermidis, E. coli, S. typhi) melalui penilaian antibakteria.
Kata kunci: Antibakteria;
biosintesis; Diopatra claparedii; nanozarah emas; poliket
REFERENCES
Abdel-Raouf,
N., Al-Enazi, N.M. & Ibraheem, I.B.M. 2017. Green biosynthesis of gold
nanoparticles using Galaxaura elongata and characterisation of their antibacterial activity. Arabian Journal of Chemistry 10(2): S3029-S3039.
Ahmad, T.,
Irfan, M., Bustam, M.A. & Bhattacharjee, S. 2016. Effect of reaction time
on green synthesis of gold nanoparticles by using aqueous extract of Elaise guineensis (oil palm leaves). Procedia Engineering 148: 467-472.
Ahmad, T.,
Wani, I.A., Manzoor, N., Ahmed, J. & Asiri, A.M. 2013. Biosynthesis,
structural characterisation and antimicrobial activity of gold and silver
nanoparticles. Colloid and Surface B:
Biointerfaces 107: 227-234.
Amendola, V., Pilot, R.M., Frasconi,
M., Marago, O.M. & Lati, M.A. 2017. Surface plasmon resonance in gold
nanoparticles: A review. Journal of
Physics: Condensed Matter 29(20): 203002.
Apte,
M., Girme, G., Nair, R., Bankar, A., Kumar, A.R. & Zinjarde, S. 2013.
Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Materials
Letters 95: 149-152.
Carrillo-Cazares, A.,
Jiménez-Mancilla, N.P., Luna-Gutiérrez, M.A., Isaac-Olivé, K. &
Camacho-López, M.A. 2017.
Study of the optical properties of functionalized gold nanoparticles in
different tissues and their correlation with the temperature increase. Journal of Nanomaterials 2017: Article
ID. 3628970.
Correard, F., Maximova, K., Estève,
M.A., Villard, C., Roy, M., Al-Kattan, M.A., Sentis,
M., Gingras, M., Kabashin, A.V. & Braguer, D. 2014. Gold nanoparticles prepared by laser ablation in
aquoues biocompatible solutions: Assessment of safety and biological identity
for nanomedicine applications. International Journal of
Nanomedicine 9:
5415-5430.
Daraee, H., Eatemadi, A., Abbasi,
E., Aval, S.F., Kouhi, M. & Akbarzadeh, A. 2014. Application of gold
nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine and Biotechnology 44(1): 410-422.
Dzimitrowicz,
A., Jamróz, P., diCenzo, G.C., Sergiel, I., Kozlecki, T. & Pohl, P. 2016.
Preparation and characterization of gold nanoparticles prepared with aqueous
extracts of Lamiaceae plants and the
effect of follow-up treatment with atmospheric pressure glow microdischarge. Arabian Journal of Chemistry 12(8):
4118-4130.
Freitas de
Freitas, L., Varca, G.H.C., Batista, J.G.S. & Lugão, A.B. 2018. An overview of the synthesis of
gold nanoparticles using radiation technologies. Nanomaterials 8(11): 939-962.
Gatoo, M.A., Naseem, S., Mir Yasir, A., Mahmood Dar, A., Khusro, Q. & Zubair, S. 2014
Physicochemical properties of nanomaterials: Implication in associated toxic
manifestations. Biomed Research
International 2014: 498420.
Glasby,
C.J., Hutchings, P.A., Fauchald, K., Paxton, H., Rouse, G.W., Russell, C.W.
& Wilson, R.S. 2000. Class polychaeta. In Polychaetes & Allies: The Southern Synthesis: Vol. Fauna
of A, edited by Beesley, G.J.B., Ross, C.J. & Glasby, P.J. Melbourne:
CSIRO Publishing. pp. 1-296.
Herizchi, R., Abbasi, E., Milani, M. &
Akbarzadeh, A. 2014. Current methods for synthesis of gold nanoparticles. Artificial Cells, Nanomedicine, and
Biotechnology 44(2): 596-602.
Huang, H.L., Chen, J.K. & Houng, M.P. 2012.
Using soft lithography to fabricate gold nanoparticle patterns for bottom-gate
field effect transistors. Thin Solid Films 524: 304-308.
Hussain,
N.S., Harun, N.A., Radzi, M.N.F.M., Idris, I. & Ismail, W.I.W. 2018.
Biosynthesis of silver nanoparticles from marine polychaete Diopatra claparedii Grube, 1878. Jurnal Teknologi 80(6): 181-187.
Karimi, S., Moshaii, A., Abbasian, S. & Nikkhah, M.
2018. Surface plasmon resonance in small gold nanoparticles: Introducing a size-dependent
plasma frequency for nanoparticles in quantum regime. Plasmonic 14(4): 851-860.
Kim, Y.J.,
Park, J., Jeong, H.S., Park, M., Baik, S., Lee, D.S., Rho, H., Kim, H., Lee,
J.H., Kim, S.M. & Kim, Y.K. 2019. A seed-mediated growth of gold nanoparticles
inside carbon nanotube fibers for fabrication of multifunctional nanohybrid
fibers with enhanced mechanical and electrical properties. Nanoscale 11: 5295-5303.
Latha, D.,
Sampurnam, S., Arulvasu, C., Prabu, P., Govindaraju, K. & Narayanan, V.
2018. Biosynthesis and characterisation of gold nanoparticle from Justicia adhatoda and its catalytic
activity. Materials Today: Proceedings 5(2): 8968-8972.
Lee, S.H.,
Jung, H.K., Kim, T.C., Kim, C.H., Shin, C.H., Yoon, T.S., Hong, A.R., Jang,
H.S., & Kim, D.H. 2018. Facile
method for the synthesis of gold nanoparticles using an ion coater. Applied Surface Science 434: 1001-1006.
Menon,
S., Rajeshkumar, S. & Kumar, V.S. 2017. A review on biogenic synthesis of
gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3(4):
516-527.
Nadaf, N.Y.
& Kanase, S.S. 2019. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in
catalytic dye degradation. Arabian
Journal of Chemistry 12(8): 4806-4814.
Ogarev, V.A.,
Rudoi, V.M. & Dement’eva, O.V. 2018. Gold nanoparticles: Synthesis, optical
properties and application. Inorganic
Materials: Applied Research 9(1): 134-140.
Onitsuka,
S., Hamada, T. & Okamura, H. 2019. Preparation of antimicrobial gold and
silver nanoparticles from tea leaf extracts. Colloid and Surface B: Biointerfaces 173: 242-248.
Paxton, H.
2002. Diopatra Audouin and Milne Edwards
(Polychaeta: Onuphidae) from Thailand, Phuket. Thailand: Marine Biological
Center Special Publication 24:
101-114.
Pei,
A.U.E., Huai, P.C., Masimen, M.A.A., Ismail, W.I.W., Idris, I. & Harun,
N.A. 2020. Biosynthesis
of gold nanoparticles (AuNPs) by marine baitworm Marphysa moribidii Idris, Hutchings and Arshad 2014 (annelida:
polychaeta) and its antibacterial activity. Advances
in Natural Sciences: Nanoscience and Nanotechnology 11(1): 015001.
Ravindran,
A., Chandran, P. & Khan, S.S. 2013. Biofunctionalized silver nanoparticles:
Advances and prospects. Colloid and
Surface B: Biointerfaces 105: 342-352.
Rengan, A.K., Bukhari, A.B.,
Pradhan, A., Malhotra, R., Banerjee, R., Srivastava, R. & De, A. 2015. In vivo analysis of biodegradable
liposome gold nanoparticles as efficient agents for photothermal therapy
cancer. Nano Letters 15(2): 842-848.
Saxena, U.
& Goswami, P. 2012. Electrical and optical properties of gold
nanoparticles: Applications in gold nanoparticles-cholesterol oxidase
integrated systems for cholesterol sensing. Journal
of Nanoparticle Research 14: 813.
Singh, P.,
Kim, Y.J., Zhang, D. & Yang, D.C. 2016 Biological synthesis of
nanoparticles from plants and microorganisms. Trends in Biotechnology 34(7): 588-599.
Singh, R.,
Sahu, S.K. & Thangaraj, M. 2014. Biosynthesis of silver nanoparticles by
marine invertebrate (polychaete) and assessment of its efficacy against human
pathogens. Journal of Nanoparticles 2014(2): 1-7.
Soumya, M., Rajeshkumar, S. &
Venkat, K.S. 2017. A review on biogenic synthesis of gold nanoparticles,
characterization and its applications. Resource-Efficient
Technologies 3(4): 516-527.
Turkevich,
J., Stevenson, P.C. & Hillier, J. 1953. The formation of colloidal gold. The Journal of Physical Chemistry 57(7):
670-673.
Yang, Y., Li, C., Yin, L., Liu, M.,
Wang, Z., Shu, Y. & Li, G. 2014. Enhanced charge transfer by gold
nanoparticles at DNA modified electrode and its application to label-free DNA
detection. ACS Applied Materials &
Interfaces 6(10): 7579-7584.
Yang, Y., Wang, L., Wan, B., Gu, Y.
& Li, X. 2019. Optically active nanomaterials for bioimaging and targeted
therapy. Frontiers in Bioengineering and
Biotechnology 7: 320-344.
Yeh, Y.C., Creran, B. & Rotello, V.M. 2012. Gold
nanoparticles: Preparation, properties and applications in bionanotechnology. Nanoscale 4(6): 1871-1880.
Yuan, C.G.,
Huo, C., Yu, S. & Gui, B. 2017. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic
activity. Physica E: Low-Dimensional
Systems and Nanostructures 85: 19-26.
Zawrah, M.F.
& Abd El-Moez, S.I. 2011. Antimicrobial activities of gold nanoparticles
against major foodborne pathogens. Life
Science Journal 8(4): 37-44.
Zhang, V.,
Qu, Y., Shen, W., Wang, J., Li, H., Zhang, Z., Li, S. & Zhou, J. 2016.
Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloid and Surface A: Physicochemical
and Engineering Aspects 497: 280-285.
*Corresponding author; email:
nooraniza@umt.edu.my
|