Sains Malaysiana 50(5)(2021):
1381-1392
http://doi.org/10.17576/jsm-2021-5005-17
Down Syndrome and Cell Therapy: A
Review
(Sindrom
Down dan Terapi Sel: Suatu Ulasan)
NORIZAM SALAMT1, RUSZYMAH
HAJI IDRUS1 & NOOR WAHIDAH MOHD NASRI1,2*
1Department of Physiology, Faculty of Medicine, Universiti
Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur,
Malaysia
2Department of Nursing, Faculty of Medicine, Universiti
Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur,
Malaysia
Received: 22 October 2019/Accepted:
28 September 2020
ABSTRACT
Cell therapy has been considered as an alternative treatment
for many diseases, including Down syndrome (DS). However, this treatment
remained debatable due to insufficient clinical data. Therefore, this study aims to identify and
evaluate studies on the potential of cell therapy in improving the quality of
life of DS patients. Relevant English articles and snowball sampling from
Science Direct and PubMed (published until August 2019) on the effects of cell
therapy on DS was retrieved. Only original articles on the effect of cell
therapy in DS patients or Ts65Dn (trisomic) mice were selected. Two independent
reviewers reviewed the articles with selective inclusion criteria using a
standard data extraction form. Cell therapy showed no significant findings on
the physical appearance, cognitive function, social, and behavior skills of DS
patients. Interestingly, implantation of murine neural stem cell (mNSC) or
murine neural progenitor cell (mNPC) showed better cell survival and response
towards brain injury, decrease tau + granules and increase granules density in
the dentate gyrus in the trisomic mice. mNSC/mNPC in mice brain was found to be
able to migrate to the sites of the injury following chemokine signals and
eventually provide neuroprotection and promote axonal growth. To conclude,
mNSC/mNPC implantation could be considered as an alternative treatment for DS
or DS with early onset of Alzheimer Disease (AD).
Keywords: Cell therapy; Down syndrome; sicca cell therapy;
trisomy 21
ABSTRAK
Rawatan terapi sel telah dipertimbangkan sebagai rawatan
alternatif pelbagai penyakit, termasuklah Sindrom Down (SD). Walau
bagaimanapun, keberkesanan terapi sel masih dibincangkan kerana kekurangan data
klinikal. Maka, kami berazam untuk mengenal pasti dan menilai kajian ke atas
potensi terapi sel dalam meningkatkan kualiti hidup pesakit SD. Makalah bahasa
Inggeris berkaitan dan persampelan snowball atau hand selected daripada Science Direct dan Pubmed (diterbitkan sehingga Ogos 2019) berkaitan kesan terapi sel ke atas SD
telah dijalankan. Hanya makalah asal tentang kesan terapi sel pada pesakit SD
atau mencit Ts65Dn (trisomi) telah dipilih. Dua orang penilai bebas telah
menilai makalah dengan kriteria rangkuman pilihan menggunakan borang
pengekstrakan data lazim. Terapi sel menunjukkan keputusan tanpa implikasi
terhadap penampilan fizikal, fungsi kognitif dan kemahiran sosial serta tingkah
laku pesakit SD. Menariknya, implan sel stem neuron murin (mNSC) atau sel
progenitor neuron murin (mNPC) menunjukkan kebolehan sel untuk terus hidup
dengan lebih baik dan bertindak balas terhadap kecederaan otak, mengurangkan
granul tau+ dan meningkatkan ketumpatan granul di girus dentat pada mencit
trisomi. mNSC/mNPC pada otak mencit menunjukkan kebolehan untuk bergerak ke
bahagian yang mengalami kecederaan berpandukan isyarat kemokin dan seterusnya
melindungi neuron dan menggalakkan pertumbuhan akson. Kesimpulannya,
pengimplanan mNSC/mNPC boleh dijadikan sebagai rawatan alternatif untuk pesakit
SD atau mengurangkan simptom penyakit Alzhemeir dalam kalangan pesakit SD.
Kata
kunci: Sindrom Down; terapi sel; terapi sel sicca; trisomi 21
REFERENCES
Bardon, L.M. 1964. Sicca cell
treatment in mongolism. Lancet 2(7353): 234-235.
Belichenko, P.V., Kleschevnikov,
A.M., Masliah, E., Wu, C., Takimoto-Kimura, R., Salehi, A. & Mobley, W.C.
2009. Excitatory-inhibitory relationship in the fascia dentata in the ts65dn
mouse model of down syndrome. Journal of
Comparative Neurology 512(4): 453-466.
Berger, I., Ahmad, A., Bansal, A.,
Kapoor, T., Sipp, D. & Rasko, J.E.J. 2016. Global distribution of
businesses marketing stem cell-based interventions. Cell Stem Cell 19(2): 158-162.
Bianchi, P., Ciani, E., Guidi, S.,
Trazzi, S., Felice, D. & Grossi, G. 2010. Early pharmacotherapy restores
neurogenesis and cognitive performance in the ts65dn mouse model for down
syndrome. Journal of Neuroscience 30(26): 8769-8779.
Bimonte-Nelson, H.A., Hunter, C.L.,
Nelson, M.E. & Granholm, A.C. 2003. Frontal cortex BDNF levels correlate
with working memory in an animal model of down syndrome. Behavioral Brain Research 139(1-2): 47-57.
Bjugstad, K.B., Teng, Y.D., Redmond,
Jr. D.E., Elsworth, J.D., Roth, R.H. & Cornelius, S.K. 2008. Human neural
stem cells migrate along the nigrostriatal pathway in a primate model of
Parkinson's disease. Experimental
Neurology 211(2): 362-369.
Black, D.B., Kato, J.G. &
Walker, G.W.H. 1966. A study of improvement in mentally retarded children
accruing from sicca cell therapy. American
Journal of Mental Deficiency 70(4): 499-508.
Bloom, G.S. 2014. Amyloid-β and
tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology 71(4): 505-508.
Bouab, M., Paliouras, G.N., Aumont,
A., Forest-Berard, K. & Fernandes, K.J. 2011. Aging of the subventricular
zone neural stem cell niche: Evidence for quiescence-associated changes between
early and mid-adulthood. Neuroscience 173: 135-149.
Bosch, M., Pineda, J.R., Sunol, C.,
Petriz, J., Cattaneo, E. & Alberch, J. 2004. Induction of gabaergic
phenotype in a neural stem cell line for transplantation in an excitotoxic
model of Huntington's disease. Experimental
Neurology 190(1): 42-58.
Caraci, F., Iulita, M.F., Pentz, R.,
Aguilar, L.F., Orciani, C. & Barone, C. 2017. Searching for new pharmacological
targets for the treatment of Alzheimer’s disease in down syndrome. European Journal of Pharmacology 817:
7-19.
Chakrabarti, L., Scafidi, J., Gallo,
V. & Haydar, T.F. 2011. Environmental enrichment rescues postnatal
neurogenesis defect in the male and female ts65dn mouse model of down syndrome. Developmental Neuroscience 33(5):
428-441.
Coghlan, A. 2017. Clinic Claims Stem Cells Treat Down’s
Syndrome. New Scientist. Accessed on 1 February 2017.
Costa, A.C. & Grybko, M.J. 2005.
Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse:
A model of down syndrome. Neuroscience
Letter 382(3): 317-322.
Deutsch, S.I., Rosse, R.B. &
Lakshman, R.M. 2006. Dysregulation of tau phosphorylation is a hypothesized
point of convergence in the pathogenesis of Alzheimer’s disease, frontotemporal
dementia and schizophrenia with therapeutic implications. Progress in Neuro-Psychopharmacology & Biological Psychiatry 30(8): 1369-1380.
Dimayuga, F.O., Wang, C., Clar,
J.M., Dimayuga, E.R., Dimayuga, V.M. & Bruce-Keller, A.J. 2007. SOD1
overexpression alters ROS production and reduces neurotoxic inflammatory
signaling in microglial cells. Journal of
Neuroimmunology 182(1-2): 89-99.
Ebert, A.D., Barber, A.E., Heins,
B.M. & Svendsen, C.N. 2010. Ex vivo delivery
of GDNF maintains motor function and prevents neuronal loss in a transgenic
mouse model of Huntington's disease. Experimental
Neurology 224(1): 155-162.
Elliott, E. & Ginzburg, I. 2006.
The role of neurotrophins and insulin on tau pathology in Alzheimer’s disease. Reviews in the Neurosciences 17(6):
635-642.
Fisher, S.A., Doree, C., Mathur, A.,
Taggart, D.P. & Martin-Rendon, E. 2016. Stem cell therapy for chronic
ischemic heart disease and congestive heart failure. Cochrane Database of Systematic Reviews (12): CD007888.
Foreman, P.J. & Ward, J. 1987.
An evaluation of cell therapy in down syndrome. Journal of Paediatrics and Child Health 23(3): 151-156.
Frotscher, M. 1997. Dual role of
Cajal-Retzius cells and reelin in cortical development. Cell and Tissue Research 290(2): 315-322.
Fuster-Matanzo, A., Llorens-Martín,
M., Jurado-Arjona, J., Avila, J. & Hernández, F. 2012. Tau protein and
adult hippocampal neurogenesis. Frontiers
in Neuroscience 6: 1-6.
Glasson, E.J., Jacques, A., Wong,
K., Bourke, J. & Leonard, H. 2016. Improved survival in down syndrome over
the last 60 years and the impact of perinatal factors in recent decades. The Journal of Pediatrics 169: 214-220.
Gopalan, N., Mohd Noor, S.N. &
Mohamed, M.S. 2017. Guidelines, policies, laws? how best to address the ethics
of stem cell research in Malaysia. e-Proceeding of the 5th International Conference on Social Sciences Research. pp. 52-69.
Hattiangady, B., Shuai, B., Cai, J.,
Coksaygan, T., Rao, M.S. & Shetty, A.K. 2007. Increased dentate
neurogenesis after grafting of glial restricted progenitors or neural stem
cells in the aging hippocampus. Stem
Cells 25(8): 2104-2117.
Inoue, M., Kajiwara, K., Yamaguchi,
A., Kiyono, T., Samura, O. & Akutsu, H. 2019. Autonomous trisomic rescue of
down syndrome cells. Laboratory
Investigation 99(6): 885-897.
Insausti, A.M., Megias, M., Crespo,
D., Cruz-Orive, L.M., Dierssen, M. & Vallina, T.F. 1998. Hippocampal volume
and neuronal number in ts65dn mice: A murine model of down syndrome. Neuroscience Letter 253(3): 175-178.
Jing, M., Shingo, T., Yasuhara, T.,
Kondo, A., Morimoto, T. & Wang, F. 2009. The combined therapy of
intrahippocampal transplantation of adult neural stem cells and
intraventricular erythropoietin-infusion ameliorates spontaneous recurrent
seizures by suppression of abnormal mossy fiber sprouting. Brain Research 1295: 203-217.
Kamei, N., Tanaka, N., Oishi, Y.,
Hamasaki, T., Nakanishi, K. & Sakai, N. 2007. BDNF, NT-3, and NGF released
from transplanted neural progenitor cells promote corticospinal axon growth in
organotypic cocultures. Spine 32(12):
1272-1278.
Kazma, M., Izrael, M., Revel, M.,
Chebath, J. & Yanai, J. 2010. Survival, differentiation, and reversal of
heroin neurobehavioral teratogenicity in mice by transplanted neural stem cells
derived from embryonic stem cells. Journal
of Neuroscience Research 88(2): 315-323.
Kern, D.S., Maclean, K.N., Jiang,
H., Synder, E.Y., Sladek, Jr. J.R. & Bjugstad, K.B. 2011. Neural stem cells
reduce hippocampal tau and reelin accumulation in aged ts65dn down syndrome mice. Cell Transplant 20(3): 371-379.
Kleschevnikov, A.M., Belichenko,
P.V., Villar, A.J., Epstein, C.J., Malenka, R.C. & Mobley, W.C. 2004.
Hippocampal long-term potentiation suppressed by increased inhibition in the
Ts65Dn mouse, a genetic model of down syndrome. Journal of Neuroscience 24(37): 8153-8160.
Koutsoudaki, P.N., Papastefanaki,
F., Stamatakis, A., Kouroupi, G., Xingi, E. & Stylianopoulou, F. 2016.
Neural stem/progenitor cells differentiate into oligodendrocytes, reduce
inflammation, and ameliorate learning deficits after transplantation in a mouse
model of traumatic brain injury. GLIA 64(5): 763-779.
Lemaire, V., Lamarque, S., Le Moal,
M., Piazza, P.V. & Abrous, D.N. 2006. Postnatal stimulation of the pups
counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biological Psychiatry 59(9): 786-792.
Leverenz, J.B. & Raskind, M.A.
1998. Early amyloid deposition in the medial temporal lobe of young down
syndrome patients: A regional quantitative analysis. Experimental Neurology 150(2): 296-304.
Lindvall, O. & Kokaia, Z. 2006.
Stem cells for the treatment of neurological disorders. Nature 441(7097): 1094-1096.
Llorens-Martin, M.V., Rueda, N.,
Tejeda, G.S., Florez, J., Trejo, J.L. & Martinez-Cue, C. 2010. Effects of
voluntary physical exercise on adult hippocampal neurogenesis and behavior of
ts65dn mice, a model of down syndrome. Neuroscience 171(4): 1228-1240.
López-Hidalgo, R., Ballestín, R.,
Vega1, J., Blasco-Ibáñez, J.M., Crespo, C. & Gilabert-Juan, J. 2016.
Hypocellularity in the murine model for down syndrome ts65dn is not affected by
adult neurogenesis. Frontiers in
Nueroscience 10(75): 1-13.
Lorenzi, H.A. & Reeves, R.H.
2006. Hippocampal hypocellularity in the ts65dn mouse originates early in
development. Brain Research 1104(1):
153-159.
Lott, I.T. & Dierssen, M. 2010.
Cognitive deficits and associated neurological complications in individuals
with down's syndrome. Lancet Neurology 9(6): 623-633.
Lugert, S., Basak, O., Knuckles, P.,
Haussler, U., Fabel, K. & Gotz, M. 2010. Quiescent and active hippocampal
neural stem cells with distinct morphologies respond selectively to
physiological and pathological stimuli and aging. Cell Stem Cell 6(5): 445-456.
Mccarron, M., Mccallion, P., Reilly,
E. & Mulryan, N. 2014. A prospective 14-year longitudinal follow-up of
dementia in persons with down syndrome. Journal
of Intellectual Disability Research 58(1): 61-70.
Ministry of Health Malaysia. 2015. Guidance Document and Guidelines for
Registration of Cell and Gene Therapy Products (CGTPs) In Malaysia.
National Down Syndrome Society: About Down Syndrome.
https://www.ndss.org/about-down-syndrome/down-syndrome/ Accessed on 15 July
2019.
National Institute of Neurological
Disorder & Research. Multiple Sclerosis. 2019. Hope through Research. http://www.ninds.nih.gov/disorders/multiple_sclerosis/detail_multiple_sclerosis.htm. Accessed on 19 July 2019.
Niles, L.P., Armstrong, K.J.,
Rinco´n Castro, L.M., Dao, C.V., Sharma, R., McMillan, C.R., Doering, L.C.
& Kirkham, D.L. 2004. Neural stem cells express melatonin receptors and
neurotrophic factors: Colocalization of the MT1 receptor with neuronal and
glial markers. BMC Neuroscience 5:
41-49.
Niu, S., Yabut, O. &
D’Arcangelo, G.J. 2008. The reelin signaling pathway promotes dendritic spine
development in hippocampal neurons. Journal
of Neuroscience 28(41): 10339-10348.
Pallas, M., Camins, A., Smith, M.A.,
Perry, G., Lee, H.G. & Casadesus, G. 2008. From aging to Alzheimer’s
disease: Unveiling “the switch” with the senescence-accelerated mouse model
(SAMP8). Journal of Alzheimer’s Disease 15(4): 615-624.
Patil, K.B. 2018. Progenitor Cells vs. Stem Cells: Differences
in Roles and Functions.
https://biologywise.com/progenitor-cells-vs-stem-cells. Accessed on 20 August
2019.
Pueschel, S.M. & Pueschel, J.K.
1992. Biomedical concerns in persons with down syndrome. Book Reviews 42(12): 222.
Rachubinski, A.L., Crowley, S.K.,
Sladek, Jr. J.R., Maclean, K.N. & Bjugstad, K.B. 2012a. Effects of neonatal
neural progenitor cell implantation on adult neuroanatomy and cognition in the
Ts65Dn model of down syndrome. PLoS ONE 7(4): 1-13.
Rachubinski, A.L., Maclean, K.N.,
Evans, J.R. & Bjugstad, K.B. 2012b. Modulating cognitive deficits and tau
accumulation in a mouse model of aging down syndrome through neonatal
implantation of neural progenitor cells. Experimental
Gerontology 47(9): 723-733.
Reinholdt, L.G., Ding, Y., Gilbert,
G.J., Gilbert, G.T., Czechanski, A. & Solzak, J.P. 2011. Molecular
characterization of the translocation breakpoints in the down syndrome mouse
model Ts65Dn. Mammalian Genome 22(11-12): 685-691.
Roizen, N.J. 2005. Complementary and
alternative therapies for Down syndrome. Mental
Retardation and Developmental Disabilities Research Reviews 11(2): 149-155.
Roizen, N.J. & Patterson, D.
2003. Down's syndrome. Lancet 361(9365): 1281-1289.
Sebastiá, J., Cristofol, R.,
Pertusa, M., Vilchez, D., Toran, N. & Barambio, S. 2004. Down's syndrome
astrocytes have greater antioxidant capacity than euploid astrocytes. European Journal of Neuroscience 20(9):
2355-2366.
Shen, S., Xia, J. & Wang, J.
2016. Nanomedicine-mediated cancer stem cell therapy. Biomaterials. 74: 1-18.
Shichiri, M., Yoshida, Y., Ishida,
N., Hagihara, Y., Iwahashi, H. & Tamai, H. 2011. Alpha-tocopherol
suppresses lipid peroxidation and behavioral and cognitive impairments in the
ts65dn mouse model of down syndrome. Free
Radical Biology and Medicine 50(12): 1801-1811.
Shroff, G. 2016. Human embryonic
stem cells in the treatment of patients with down syndrome: A case report. Journal of Medical Cases 7(4): 123-125.
Smith, G.K., Kesner, R.P. &
Korenberg, J.R. 2014. Dentate gyrus mediates cognitive function in the
Ts65Dn/DnJ mouse model of down syndrome. Hippocampus 24(3): 354-362.
Tomobe, K. & Nomura, Y. 2009.
Neurochemistry, neuropathology, and heredity in SAMP8: A mouse model of
senescence. Neurochemical Research 34(4): 660-669.
US National Library of Medicine.
National Institutes of Health Search database. 2019.
https://www.ncbi.nlm.nih.gov/pubmed. Accessed on 19 August 2019.
Van Dyke, D.C., Land, D.J., van
Duyne, S., Heide, F. & Chang, H. 1990. Cell therapy in children with down
syndrome: A retrospective study. Pediatrics 85(1): 79-84.
Wiseman, F.K., Al-Janabi, T., Hardy,
J., Karmiloff-Smith, A., Nizetic, D. & Tybulewicz, V.L. 2015. A genetic
cause of Alzheimer disease: Mechanistic insights from down syndrome. Nature Review Neuroscience 16(9):
564-574.
Yang, H., Wen, S.R., Zhang, G.W.,
Wang, T.G., Hu, F.X. & Li, X.L. 2011. Effects of Chinese herbal medicine
Fuzhisan on autologous neural stem cells in the brain of SAMP-8 mice. Experimental Gerontology 46(8): 628-636.
Zigman, W.B., Devenny, D.A.,
Krinsky-McHale, S.J., Jenkins, E.C., Urv, T.K. & Wegiel, J. 2008.
Alzheimer's disease in adults with down syndrome. International Review of Research in Mental Retardation 36: 103-145.
Zis, P. & Strydom, A. 2018.
Clinical aspects and biomarkers of Alzheimer’s disease in down syndrome. Free Radical Biology and Medicine 114:
3-9.
*Corresponding author; email: idanasri@ppukm.ukm.edu.my
|