Sains Malaysiana 50(5)(2021): 1433-1444

http://doi.org/10.17576/jsm-2021-5005-22

 

Study on the Mechanism of Ginkgo Seeds in Treating Bronchitis by Network Pharmacology

(Kajian terhadap Mekanisme Biji Ginkgo dalam Rawatan Bronkitis menggunakan Rangkaian Farmakologi)

 

TINGTING WU1,2, LIHU ZHANG1,2, DONGDONG LI1,2, TAO WU1,2, YAN JIANG2* & LINGUO ZHAO1,2*

 

1Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China

 

2College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China

 

Received: 26 June 2020/Accepted: 25 September 2020

 

ABSTRACT

In recent years, with the global environmental deterioration and air pollution, the incidence of bronchitis has increased year by year, and the sales of anti-bronchitis drugs are growing rapidly, mainly due to the long treatment cycle and the difficulty of curing. Developing available traditional Chinese medicines with significant curative effect against bronchitis would be a promising strategy; for instance, Ginkgo seeds, as the fruit of natural plant ginkgo, has been used in ancient times to cure coughs. However, the detailed mechanism of curing cough has not been shown yet. Investigate the mechanism of Ginkgo Semen in the treatment of bronchitis by establishing a series of molecular networks including active ingredients-targets, proteins interactions, biological functions, pathway, and biological processes of targets. In this study, the main active ingredients of Ginkgo seeds and the potential targets related to bronchitis could be obtained by retrieving corresponding database. The molecular docking study between active molecules and protein targets was performed by Glide 6.6. Subsequently, a total of forty potential targets were manually selected. Based on this, the ingredients-target network was constructed using Cytoscape software, as well as proteins interactions network combing with the String database. Finally, the molecular biological function, metabolic pathway, and biological processes of these forty targets were analyzed by Clue GO plug-in. The results indicated that these protein targets were closely related to lipid transport, positive regulation of DNA replication, cAMP metabolic pathway, and other processes, which played a vital role in the treatment of bronchitis by mediating interleukin 17, fluid shear stress and atherosclerosis, asthma, renin secretion, p53, and other signaling pathways. Among these targets, the two protein ALB (Albumin) and DHRS2 (Dehydrogenase 2) can interact with compounds more frequently, and the top three compounds ranked by the docking scores were amentoflavone, (+)-catechin-5-O-glucoside, and liquiritin, implying that these compounds might be used for the treatment of bronchitis. It is obvious that the pharmacological effect of Ginkgo seeds on bronchitis displayed a characteristic of multi-components, multi-targets, and multi-pathways. Nevertheless, the two protein targets and three compounds derived from Ginkgo seeds could be further used for the explanation for Ginkgo seeds in curing bronchitis. This research can provide a scientific basis for studying on the anti-bronchitis mechanism of Ginkgo seeds.

 

Keywords: Bronchitis; Ginkgo seeds; mechanism; molecular docking; network pharmacology

 

ABSTRAK

Dalam beberapa tahun kebelakangan ini, dengan kemerosotan alam sekitar global dan pencemaran udara, penyakit bronkitis telah meningkat dari tahun ke tahun dan penjualan ubat-ubatan anti-bronkitis semakin pesat, terutamanya disebabkan oleh kitaran rawatan yang panjang dan kesukaran merawat. Pembangunan ubat-ubatan tradisi Cina yang sedia ada dengan kesan penyembuhan yang ketara terhadap bronkitis merupakan strategi yang baik, sebagai contoh, biji Ginkgo, biji semula jadi Ginkgo, telah digunakan dari zaman purba untuk mengubati batuk. Walau bagaimanapun, mekanisme yang terperinci bagi mengubati batuk belum dilaporkan. Mekanisme dalam rawatan bronkitis dikaji dengan menubuhkan satu siri rangkaian molekul, termasuk bahan-bahan aktif sasaran, interaksi protein, fungsi biologi, laluan dan proses biologi sasaran. Dalam kajian ini, bahan-bahan aktif utama biji Ginkgo dan sasaran yang berpotensi berkaitan dengan bronkitis telah diperoleh dengan mendapatkan semula pangkalan data yang sepadan. Kajian dok molekul antara molekul aktif dan sasaran protein dilakukan dengan menggunakan Glide 6.6. Seterusnya, sejumlah empat puluh sasaran yang berpotensi dipilih secara manual. Berdasarkan ini, rangkaian bahan-bahan sasaran telah dibina menggunakan perisian Cytoscape, serta rangkaian interaksi protein yang menggabungkan pangkalan data rentetan. Akhirnya, fungsi biologi molekul, laluan metabolik dan proses biologi sasaran empat puluh ini telah dianalisis oleh Clue GO plug-in. Keputusan kami menunjukkan bahawa potensi sasaran bronkitis berkaitan dengan bahan aktif biji Ginkgo memainkan peranan penting dalam rawatan bronkitis oleh mediating interleukin-17, tekanan ricih cecair dan aterosklerosis, asma, rembesan, p53 dan lain-lain laluan Sign. Antara sasaran tersebut, kedua-dua protein ALB (Albumin) dan DHRS2 (Dehydrogenase 2) boleh berinteraksi dengan sebatian dengan lebih kerap dan tiga sebatian teratas yang disenaraikan oleh skor dok adalah amentoflavone, (+)-catechin-5-O-glucoside dan liquiritin, membayangkan bahawa sebatian ini mungkin digunakan untuk rawatan bronkitis. Adalah jelas bahawa kesan farologi biji Ginkgo pada bronkitis memaparkan ciri pelbagai komponen, pelbagai sasaran dan pelbagai laluan. Walau bagaimanapun, dua protein sasaran dan tiga kompaun yang diperoleh daripada biji Ginkgo boleh diguna pakai untuk menjelasan peranan biji Ginkgo dalam mengubati bronkitis. Kajian ini boleh menyediakan asas saintifik untuk mempelajari mekanisme anti-bronkitis biji Ginkgo.

 

Kata kunci: Biji Ginkgo; Bronkitis; dok molekul; mekanisme; rangkaian farmakologi

 

REFERENCES

Bao, Y.T., Wang, Y., Ren, X.D., Huang, L.F. & Zeng, R. 2018. Exploration on antibacterial activity and mechanism of flowers and leaves from Paeonia rockiibased on network pharmacology. China Journal of Chinese Materia Medica 43(4): 779-785.

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pages, F., Trajanoski, Z. & Galon, J. 2009. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8): 1091-1093.

Chang, Y., Al-Alwan, L., Risse, P.A., Roussel, L., Rousseau, S., Halayko, A.J., Martin, J.G., Hamid, Q. & Eidelman, D.H. 2011. TH17 cytokines induce human airway smooth muscle cell migration. Journal of Allergy Clinical Immunology 127(4): 1046-1053.

Gaga, M., Lambrou, P., Papageorgiou, N., Koulouris, N.G., Kosmas, E., Fragakis, S., Sofios, C., Rasidakis, A. & Jordanoglou, J. 2010. Eosinophils are a feature of upper and lower airway pathology in non-atopic asthma, irrespective of the presence of rhinitis. Clinical & Experimental Allergy 30(5): 663-669.

Hellings, P.W., Kasran, A., Liu, Z., Vandekerckhove, P., Wuyts, A., Overbergh, L., Mathieu, C. & Ceuppens, J.L. 2003. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. American Journal of Respiratory Cell and Molecular Biology 28(1): 42-50.

Kinyanjui, M.W., Shan, J., Nakada, E.M., Qureshi, S.T. & Fixman, E.D. 2013. Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness. Journal of Immunology 190(8): 3859-3868.

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A.C. & Wishart, D.S. 2011. DrugBank 3.0: A comprehensive resource for 'omics' research on drugs. Nucleic Acids Research 39(Database issue): D1035-D1041.

Kohl, M., Wiese, S. & Warscheid, B. 2011. Cytoscape: Software for visualization and analysis of biological networks. Methods in Molecular Biology 696: 291-303.

Li, S.J., Geng, J.L. & Zhang, Y. 2017. Advances in pharmacological research of Ginkgo biloba. Drug Evaluation Research 40: 731-741.

Liu, Y.F., Ai, N., Keys, A., Fan, X.H. & Chen, M.J. 2015. Network pharmacology for traditional Chinese medicine research: Methodologies and applications. Chinese Herbal Medicines 7(1): 18-26.

Nakashima, K., Hirota, T., Obara, K., Shimizu, M., Doi, S., Fujita, K., Shirakawa, T., Enomoto, T., Yoshihara, S., Ebisawa, M., Matsumoto, K., Saito, H., Suzuki, Y., Nakamura, Y. & Tamari, M. 2006. A functional polymorphism in MMP-9 is associated with childhood atopic asthma. Biochemical & Biophysical Research Communications 344(1): 300-307.

Nicholson, J.P., Wolmarans, M.R. & Park, G.R. 2000. The role of albumin in critical illness. British Journal of Anaesthesia 85(4): 599-610.

Ooi, A.T., Ram, S., Kuo, A., Gilbert, J.L., Yan, W., Pellegrini, M., Nickerson, D.W., Chatila, T.A. & Gomperts, B.N. 2012. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation. American Journal of Translational Research 4(2): 219-228.

Pedersen, T., Møller, A.M. & Gøtzsche, P.C. 2005. Human albumin in critically ill patients. Critical Care Medicine 33(5): 1183-1185.

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y. & Yang, L. 2014. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics 6(1): 13.

Sakai, H., Nishimura, A., Watanabe, Y., Nishizawa, Y., Hashimoto, Y., Chiba, Y. & Misawa, M. 2010a. Involvement of Src family kinase activation in angiotensin II-induced hyperresponsiveness of rat bronchial smooth muscle. Peptides 31(12): 2216-2221.

Sakai, H., Nishizawa, Y., Nishimura, A., Chiba, Y., Goto, K., Hanazaki, M. & Misawa, M. 2010b. Angiotensin II induces hyperresponsiveness of bronchial smooth muscle via an activation of p42/44 ERK in rats. Pflügers Archiv - European Journal of Physiology 460(3): 645-655.

Sela, B. 1999. Interleukin IL-13: A central mediator in allergic asthma. Harefuah 137(7-8): 317-319.

Schmidt, D., Dent, G. & Rabe, K.F. 1999. Selective phosphodiesterase inhibitors for the treatment of bronchial asthma and chronic obstructive pulmonary disease. Clinical & Experimental Allergy 29(Suppl 2): 99-109

Spina, D., Landells, L.J. & Page, C.P. 1998. The role of theophylline and phosphodiesterase4 isoenzyme inhibitors as anti-inflammatory drugs. Clinical & Experimental Allergy Journal of the British Society for Allergy & Clinical Immunology 28(Suppl 3): 24-34.

Stover, N.A. & Cavalcanti, A.R.O. 2014. Using NCBI BLAST. Current Protocols Essential Laboratory Techniques 8(1): 31-35.

Sun, Y., Zhu, R., Ye, H., Tang, K., Zhao, J., Chen, Y., Liu, Q. & Cao, Z. 2013. Towards a bioinformatics analysis of anti-Alzheimer's herbal medicines from a target network perspective. Briefings in Bioinformatics 14(3): 327-343.

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J. & Mering, C.v. 2017. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research 45(Database issue): D362-D368.

Torphy, T.J., Barnette, M.S., Underwood, D.C., Griswold, D.E., Christensen, S.B., Murdoch, R.D., Nieman, R.B. & Compton, C.H. 1999. Ariflo (SB 207499), a second generation phosphodiesterase 4 inhibitor for the treatment of asthma and COPD: From concept to clinic. Pulmonary Pharmacology & Therapeutics 12(2): 131-135.

Westerhoff, H.V. 2015. Network-based pharmacology through systems biology. Drug Discovery Today Technologies 15: 5-16.

Wynn, T.A. 2003. IL-13 effector functions. Annual Review of Immunology 21: 425-456.

Xiao, W., Hsu, Y.P., Ishizaka, A., Kirikae, T. & Moss, R.B. 2005. Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest 128(4): 2316-2326.

Yoshida, Y., Shimizu, I., Katsuumi, G., Jiao, S., Suda, M., Hayashi, Y. & Minamino, T. 2015. P53-induced inflammation exacerbates cardiac dysfunction during pressure overload. Journal of Molecular and Cellular Cardiology 85: 183-198.

Zhang, L.H., et al. 2018. Prediction of anti-inflammatory mechanism of ginkgo folium extract based on molecular docking and network pharmacology. Chinese Journal of Experimental Traditional Medical Formulae 7: 192-198.

Zhang, X., Gao, Y., Xiang, H., Qin, M.Q. & Tian, J.S. 2017. An exploration on mechanism of antidepression of Jiaotai Pills based on network pharmacology. Chinese Traditional and Herbal Drugs 48(8): 1584-1590.

Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Xu, F., Zhang, L., Song, Y., Liu, X., Zhang, J., Han, B., Zhang, P. & Chen, Y. 2012. Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic Acids Research 40(Database issue): D1128-D1136.

Zhuang, Y., Qin, K., Yang, B., Liu, X., Cai, B. & Cai, H. 2018. Prediction of the targets of the main components in blood after oral administration of: Xanthii Fructus: A network pharmacology study. RSC Advances 8(16): 8870-8877.

 

*Corresponding author; email: jiangyancpu@126.com

 

 

 

previous