Sains Malaysiana 50(5)(2021): 1457-1466
http://doi.org/10.17576/jsm-2021-5005-24
Palm Tocotrienol-Rich Fraction Protects Neonatal
Rat Cardiomyocytes from H2O2-Induced Oxidative Damage
(Fraksi Kaya Tocotrienol Sawit Melindungi Kardiomiosit Tikus
Neonatal daripada Induksi Kerosakan Pengoksidaan H2O2)
NOOR SHAREENA AISHA ABDUL
KHALID, KHUZAIDATUL AZIDAH AHMAD NAZRI & ZAKIAH JUBRI*
Department of Biochemistry, UKM Medical
Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
Received: 8 July 2020/Accepted: 30 September 2020
ABSTRACT
Oxidative stress plays an important role in the
pathogenesis of heart disease. Tocotrienol-rich fraction (TRF) is an
antioxidant and that has the potential to reduce the risk of heart disease.
This study is to determine the protective effects of palm TRF against H2O2-induced
oxidative damage in neonatal rat cardiomyocytes (NRCM). The NRCM were divided
into control, treated with TRF (10 µg/mL), H2O2 (0.5 mM)
and treated with TRF prior to H2O2 induction
(pre-treatment). Cell viability was determined by the MTS assay,while the
presence of reactive oxygen species (ROS) was determined using fluorescent
dihydroethidium (DHE) and
5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate
(carboxy-H2DCFDA) dye. Mitochondrial integrity and cell death were
determined using JC-1 and Annexin V-FITC staining, respectively. Lactate
dehydrogenase (LDH) and superoxide dismutase (SOD) activity were determined by
colorimetric assay kit. The concentration of H2O2 from
0.5 to 5 mM reduced the cell viability and the H2O2 IC50 value of 0.5 mM was used in the experiment. H2O2 induction
increased the intensity of carboxy-H2DCFDA and DHE-stains; and also
the intensity of green fluorescence of J-monomers in JC-1 staining compared to
the control group. The activity of LDH increased while the activity of SOD
decreased in the H2O2 group. Pre-treatment with TRF
reduced the intensities of carboxy-H2DCFDA and DHE-stains, as well
as the green fluorescence of J-monomers in JC-1. Meanwhile, the LDH activity
was reduced in the pre-treatment group but no changes were recorded in SOD
activity compared to the H2O2 group. Palm TRF protects
cardiomyocytes from oxidative damage by reducing ROS production and maintaining
the mitochondrial membrane integrity thus reducing cell death.
Keywords: Cardiomyocytes; H2O2; oxidative
damage; tocotrienol-rich fraction
ABSTRAK
Tekanan
oksidatif memainkan peranan penting dalam patogenesis penyakit jantung. Fraksi
kaya tokotrienol (TRF) adalah antioksidan dan berpotensi mengurangkan risiko
penyakit jantung. Kajian ini adalah untuk mengetahui kesan pelindung TRF sawit
terhadap kerosakan oksidatif aruhan H2O2 pada
kardiomiosit tikus neonatal (NRCM). NRCM dibahagi kepada kawalan, dirawat
dengan TRF (10 µg/mL), H2O2 (0.5 mM) dan dirawat dengan
TRF sebelum induksi dengan H2O2 (pra-rawatan).
Kebolehhidupan sel ditentukan dengan ujian MTS. Kehadiran ROS ditentukan
menggunakan pewarna dihidroetidium (DHE) dan pewarna
5-(dan-6)-karboksi-2',7′-diklorodihidrofluorescein diasetat
(carboxy-H2DCFDA). Integriti mitokondria dan kematian sel ditentukan
menggunakan pewarnaan JC-1 dan Annexin V-FITC masing-masing. Aktiviti laktat
dehidrogenase (LDH) dan superoksid dismutase (SOD) ditentukan menggunakan kit
esei kalorimetrik. Kepekatan H2O2 bermula daripada 0.5
hingga 5 mM menurunkan kebolehhidupan sel dan nilai IC50 H2O2 0.5 mM digunakan di dalam kajian ini. Aruhan H2O2 meningkatkan
keamatan karboksi-H2DCFDA dan pewarnaan DHE; dan juga keamatan
pendarfluor hijau monomer-J dalam pewarnaan JC-1 berbanding kumpulan kawalan.
Aktiviti LDH meningkat sementara aktiviti SOD menurun dalam kumpulan H2O2.
Pra-rawatan dengan TRF menurunkan keamatan karboksi-H2DCFDA dan
pewarnaan DHE; dan juga keamatan pendarfluor hijau monomer-J dalam pewarnaan
JC-1. Manakala aktiviti LDH menurun dalam kumpulan pra-rawatan tetapi tiada
perubahan ditunjukkan dalam aktiviti SOD berbanding kumpulan H2O2.
TRF sawit melindungi kardiomiosit daripada kerosakan oksidatif melalui
pengurangan penghasilan ROS dan mengekalkan integriti membran mitokondria
seterusnya mengurangkan kematian sel.
Kata
kunci: Fraksi kaya tokotrienol; H2O2; kardiomiosit;
kerosakan oksidatif
REFERENCES
Akyol, S., Yükselten, Y., Çakmak, Ö.,
Uğurcu, V., Altuntaş, A., Gürler, M., Akyol, Ö. & Demircan, K.
2014. Hydrogen peroxide-induced oxidative damage in human chondrocytes: the
prophylactic effects of Hypericum
perforatum Linn extract on deoxyribonucleic acid damage, apoptosis and
matrix remodeling by a disintegrin-like and metalloproteinase with
thrombospondin motifs proteinases. Archives of Rheumatology 29: 203-214.
Ali, S.F. & Woodman, O.L. 2015.
Tocotrienol rich palm oil extract is more effective than pure tocotrienols at
improving endothelium-dependent relaxation in the presence of oxidative stress. Oxidative Medicine and Cellular Longevity 2015: 150829.
Berbee,
M., Fu, Q., Boerma, M., Pathak, R., Zhou, D., Kumar, K.S. & Hauer-Jensen,
M. 2011. Reduction of radiation-induced vascular nitrosative stress by the
vitamin E analog γ-tocotrienol: Evidence of a role for
tetrahydrobiopterin. International
Journal of Radiation Oncology Biology Physics 79(3): 884-891.
Bester,
D.J., Kupai, K., Csont, T., Szucs, G., Csonka, C., Esterhuyse, A.J.,
Ferdinandy, P. & Van Rooyen, J. 2010. Dietary red palm oil supplementation
reduces myocardial infarct size in an isolated perfused rat heart model. Lipids in Health and Disease 9(1): 64.
Birben, E., Sahiner, U.M., Sackesen, C.,
Erzurum, S. & Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5(1): 9-19.
Biswas, S.K. 2016. Does the interdependence
between oxidative stress and inflammation explain the antioxidant paradox. Oxidative Medicine and Cellular Longevity 2016: 5698931.
Brand, M.D., Affourtit, C., Esteves, T.C.,
Green, K., Lambert, A.J., Miwa, S., Pakay, J.L. & Parker, N. 2004. Mitochondrial
superoxide: Production, biological effects, and activation of uncoupling
proteins. Free Radical Biology and
Medicine 37: 755-767.
Casey,
T.M., Arthur, P.G. & Bogoyevitch, M.A. 2007. Necrotic death without
mitochondrial dysfunction-delayed death of cardiac myocytes following oxidative
stress. Biochimica et Biophyica Acta -
Molecular Cell Research 1773: 342-351.
Condorelli, G., Roncarati, R,, Ross, J.,
Pisani, A., Stassi, G., Todaro, M., Trocha, S., Drusco, A., Gu, Y. & Russo,
M.A. 2001. Heart-targeted overexpression of caspase3 in mice increases infarct
size and depresses cardiac function. Proceedings of the National Academy of Sciences 98: 9977-9982.
Dieterich, S.,
Bieligk, U., Beulich, K., Hasenfuss, G. & Prestle, J. 2000. Gene expression
of antioxidative enzymes in the human heart: Increased expression of catalase
in the end-stage failing heart. Circulation 101(1): 33-39.
Dröge,
W. 2002. Free radicals in the physiological control of cell function. Physiological Reviews 82: 47-95.
Esterhuyse,
A.J., Du Toit, E.F., Benade, A.J.S. & Van Rooyen, J. 2005. Dietary red palm
oil improves reperfusion cardiac function in the isolated perfused rat heart of
animals fed a high cholesterol diet. Prostaglandins,
Leukotrienes and Essential Fatty Acids 72(3): 153-161.
Fauconnier,
J., Meli, A.C., Thireau, J., Roberge, S., Shan, J., Sassi, Y., Reiken, S.R.,
Rauzier, J.M., Marchand, A., Chauvier, D., Cassan, C., Crozier, C., Bideaux,
P., Lompre, A.M., Jacotot, E., Marks, A.R. & Lacampagne, A. 2011. Ryanodine
receptor leak mediated by caspase-8 activation leads to left ventricular injury
after myocardial ischemia-reperfusion. Proceedings
of the Natlional Academy of Sciences U.S.A 108: 13258-13263.
Fu,
J.Y., Che, H.L., Tan, D.M. & Teng, K.T. 2014. Bioavailability of
tocotrienols: Evidence in human studies. Nutrition & Metabolism 11(1): 5.
Howard,
A.C., McNeil, A.K. & McNeil, P.L. 2011. Promotion of plasma membrane repair
by vitamin E. Nature Communications 2: 597.
Hrelia,
S., Fiorentini, D., Maraldi, T., Angeloni, C., Bordoni, A., Biagi, P.L. &
Hakim, G. 2002. Doxorubicin induces early lipid peroxidation associated with
changes in glucose transport in cultured cardiomyocytes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1567: 150-156.
Kamal-Eldin,
A. & Appelqvist, L.A. 1995. The effects of extraction methods on sasame oil
stability. Journal of the American Oil
Chemists' Society 72: 967-969.
Khor,
H.T., Chieng, D.Y. & Ong, K.K. 1995. Tocotrienols inhibits HMG-CoA
reductase activity in the guinea pig. Nutrition
Research 15: 537-544.
Kourouma,
A., Quan, C., Duan, P., Qi, S., Yu, T., Wang, Y. & Yang, K. 2015. Bisphenol
A induces apoptosis in liver cells through induction of ROS. Advances in Toxicology 2015: Article
ID. 901983.
Krager,
K.J., Pineda, E.N., Kharade, S.V., Kordsmeier, M., Howard, L., Breen, P.J.
& Aykin-Burns, N. 2015. Tocotrienol-rich fraction from rice bran
demonstrates potent radiation protection activity. Evidence-Based Complementary and Alternative Medicine 2015: 148791.
Kuhad,
A. & Chopra, K. 2009. Tocotrienol attenuates oxidative-nitrosative stress
and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 57(4): 456-462.
Lane,
R.K., Hilsabeck, T. & Rea, S.L. 2015. The role of mitochondrial dysfunction
in age-related diseases. Biochimica et
Biophysica Acta (BBA)-Bioenergetics 1847: 1387-1400.
Lobo,
V., Patil, A., Phatak, A. & Chandra, N. 2010. Free radicals, antioxidants and
functional foods: impact on human health. Pharmacognosy Reviews 4: 118.
Miura,
T., Tanno, M. & Sato, T. 2010. Mitochondrial kinase signalling pathways in
myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovascular Research 88: 7-15.
Muharis,
S.P., Top, A.G.M., Murugan, D. & Mustafa, M.R. 2010. Palm oil tocotrienol
fractions restore endothelium dependent relaxation in aortic rings of
streptozotocin-induced diabetic and spontaneously hypertensive rats. Nutrition Research 30(3): 209-216.
Nakamura,
T., Wang, L., Wong, C.C., Scott, F.L., Eckelman, B.P., Han, X., Tzitzilonis,
C., Meng, F., Gu, Z. & Holland, E.A. 2010. Transnitrosylation of XIAP
regulates caspase-dependent neuronal cell death. Molecular Cell 39: 184-195.
Nazrun, A.S., Khairunnur, A., Norliza,
M., Norazlina, M. & Ima Nirwana, S. 2008. Effects of palmt tocotrienols on
oxidative stress and bone strength in ovariectomised rats. Medicine and Health 3(2): 247-255.
Nowak,
G., Bakajsova, D., Hayes, C., Hauer-Jensen, M. & Compadre, C.M. 2012.
γ-Tocotrienol protects against mitochondrial dysfunction and renal cell
death. Journal of Pharmacology and
Experimental Therapeutics 340: 330-338.
Obal, D., Dai,
S., Keith, R., Dimova, N., Kingery, J., Yu-Ting, Z., Zweier, J., Velayutham,
M., Prabhu, S.D., Li, Q., Conklin, D., Yamg, D., Bhatnagar, A., Bolli, R. &
Rokosh, G. 2012. Cardiomyocyte-restricted overexpression of extracellular
superoxide dismutase increases nitric oxide bioavailability and reduces infarct
size after ischemia/reperfusion. Basic Research in Cardiology 107(6): 305.
Panth, N.,
Paudel, K.R. & Parajuli, K. 2016. Reactive oxygen species: A key hallmark
of cardiovascular disease. Advances in
Medicine 2016: 9152732.
Pinto, A.,
Immohr, M.B., Jahn, A., Jenke, A., Boeken, U., Lichtenberg, A. & Akhyari,
P. 2016. The extracellular isoform of superoxide dismutase has a significant
impact on cardiovascular ischaemia and reperfusion injury during
cardiopulmonary bypass. European Journal
of Cardio-Thoracic Surgery 50: 1035-1044.
Sabbah,
H.N. 2016. Targeting mitochondrial dysfunction in the treatment of heart
failure. Expert Review of
Cardiovascular Therapy 14(12): 1305-1313.
Sahhugi,
Z., Hasenan, S.M. & Jubri, Z. 2014. Protective effects of gelam honey
against oxidative damage in young and aged rats. Oxidative Medicine and Cellular Longevity 2014: 673628.
Salameh, A. & Dhein, S. 2005. Culture
of neonatal cardiomyocytes. In Practical
Methods in Cardiovascular Research, edited by Dhein, S., Mohr, F.W. &
Delmar, M. Springer, Berlin, Heidelberg. pp. 568-576.
Sambanthamurthi,
R., Sundram, K. & Tan, Y.A. 2000. Chemistry and biochemistry of palm oil. Progress in Lipid Research 39: 507-558.
Sharma, P., Jha, A.B., Dubey, R.S. &
Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and
antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012: Article
ID. 217037.
Sugamura, K. & Keaney, J.F. 2011.
Reactive oxygen species in cardiovascular disease. Free Radical Biology and Medicine 51: 978-992.
Taverne, Y.J., Bogers, A.J., Duncker, D.J.
& Merkus, D. 2013. Reactive oxygen species and the cardiovascular system. Oxidative Medicine and Cellular Longevity 2013: 862423.
Tham,
Y.K., Bernardo, B.C., Ooi, J.Y., Weeks, K.L. & McMullen, J.R. 2015.
Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways
and novel therapeutic targets. Archives
of Toxicology 89: 1401-1438.
Vasanthi,
H.R., Parameswari, R. & Das, D.K. 2012. Multifaceted role of tocotrienols
in cardioprotection supports their structure: Function relation. Genes and Nutrition 7: 19-28.
Wang,
X., Dong, W., Yuan, B., Yang, Y., Yang, D., Lin, X., Chen, C. & Zhang, W.
2016. Vitamin E confers cytoprotective effects on cardiomyocytes under
conditions of heat stress by increasing the expression of
metallothionein. International
Journal of Molecular Medicine 37(5): 1429-1436.
Webster,
K.A. 2012. Mitochondrial membrane permeabilization and cell death during
myocardial infarction: Roles of calcium and reactive oxygen species. Future Cardiology 8(6): 863-884.
World
Health Organization. 2016. The World
Health Report 2002. Reducing Risk, Promoting Healthy Life. World Health
Organization (WHO).
Wu, A., Ying, Z. & Gomez-Pinilla, F.
2010. Vitamin E protects against oxidative damage and learning disability after
mild traumatic brain injury in rats. Neurorehabilitation
and Neural Repair 24: 290-298.
Zarkasi, K.A., Jen-Kit, T.
& Jubri, Z. 2019. Molecular understanding of the cardiomodulation in
myocardial infarction and the mechanism of vitamin E protection. Mini-Review in Medical Chemistry 19(17):
1407-1426.
Zarkasi,
K.A., Zainalabidin, S., Jen-Kit, T., Hakimi, N.H., Ramli, N.Z. & Jubri, Z.
2020. Tocotrienol-rich fraction modulates cardiac metabolic profile changes in
isoprenaline-induced myocardial infarction rats. Sains Malaysiana 49(2): 357-373.
Zhang, J., Wang, X., Vikash,
V., Ye, Q., Wu, D., Liu, Y. & Dong, W. 2016. ROS and ROS-mediated cellular
signaling. Oxidative Medicine and
Cellular Longevity 2016: 4350965.
Zhang, Y., Chen,
X., Gueydan, C. & Han, J. 2018. Plasma membrane changes during programmed
cell deaths. Cell Research 28(1):
9-21.
Zhou, T.,
Chia-Chen, C. & Zuo, L. 2015. Molecular characterization of reactive oxygen
species in myocardial ischemia-reperfusion injury. BioMed Research International 2015: Article
ID. 864946.
*Corresponding
author; email: zakiah.jubri@ppukm.ukm.edu.my
|