Sains Malaysiana 50(5)(2021):
1497-1509
http://doi.org/10.17576/jsm-2021-5005-28
Modelling the Spread of COVID-19 on Malaysian Contact
Networks for Practical Reopening Strategies in an Institutional Setting
(Pemodelan Penyebaran COVID-19 ke atas Rangkaian Kontak di
Malaysia untuk Strategi Pembukaan Semula yang Praktikal dalam Sesuatu Institusi)
FATIMAH ABDUL RAZAK1*& PAUL EXPERT2,3
1Department
of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Global
Digital Health Unit, Imperial College London, SW7 2AZ, United Kingdom
3Tokyo Tech
World Research Hub Initiative, Tokyo Institute of Technology, Japan
Received: 31 January 2021/Accepted:
17 March 2021
ABSTRACT
Reopening strategies are crucial to balance efforts of
economic revitalization and bringing back a sense of normalcy while mitigating
outbreaks and effectively flattening the infection curve. This paper proposes
practical reopening, monitoring and testing strategies for institutions to
reintroduce physical meetings based on SIR simulations run on a student
friendship network collected pre-COVID-19. These serve as benchmarks to assess
several testing strategies that can be applied in physical classes. Our
simulations show that the best outbreak mitigation results are obtained with
full knowledge of contact, but are also robust to non-compliance of students to
new social interaction guidelines, simulated by partial knowledge of the
interactions. These results are not only applicable to institutions but also
for any organization or company wanting to navigate the COVID-19 ravaged world.
Keywords: Contact networks; COVID-19; friendship networks;
reopening strategies; SIR on networks
ABSTRAK
Strategi pembukaan semula sangat penting dalam
menyeimbangkan usaha pemulihan semula ekonomi tanpa mengabaikan usaha
melandaikan lengkung jangkitan. Makalah ini mencadangkan beberapa strategi
pengawasan dan pengujian yang praktikal bagi mengadakan perjumpaan fizikal
berdasarkan simulasi ke atas rangkaian persahabatan pelajar yang dikumpul
sebelum penyebaran COVID-19. Simulasi ini boleh digunakan sebagai penanda aras
untuk menguji beberapa strategi pembukaan semula yang boleh diguna pakai dalam
kelas. Simulasi kami menunjukkan bahawa strategi terbaik diperoleh dengan
mengetahui maklumat penuh rangkaian perhubungan. Namun begitu, kami juga
mencadangkan strategi yang tidak memerlukan maklumat rangkaian. Dapatan ini
bukan sahaja terhad kepada institusi tetapi ia juga boleh diguna pakai oleh
sebarang organisasi atau syarikat dalam menghadapi norma baharu era COVID-19.
Kata kunci: COVID-19; rangkaian kontak; rangkaian
persahabatan; SIR dalam rangkaian; strategi pembukaan semula
REFERENCES
Aleta, A., Martin-Corral, D., Piontti, A.P. & Ajelli, M.
2020. Modeling the impact of social distancing, testing, contact tracing and
household quarantine on second-wave scenarios of the COVID-19 epidemic. Nature Human Behaviour 4(9): 964-971.
Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A.,
Cattuto, C., Lehmann, S., Salathé, M. & Lepri, B. 2021. Digital proximity
tracing on empirical contact networks for pandemic control. Nat. Commun. 12(1): 1655.
Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C.,
Litvinova, M., Merler, S., Piontti, A.P., Kunpeng, M., Rossi, L., Kaiyuan, S.,
Viboud, C., Xiong, X., Yu, H., Halloran, M.E., Longini Jr., I.M. &
Vespignani, A. 2020. The effect of travel restrictions on the spread of the
2019 novel coronavirus (COVID-19) outbreak. Science 368(6489) 395-400.
Feld, S.L. 1991. Why your friends have more friends than you
do. American Journal of Sociology 96(6): 1464-1477.
Ferguson, N., Laydon, D., Nedjati-Gilani, G., Natsuko,
Imai., Ainslie, K., Baguelin, M., Sangeeta Bhatia, Adhiratha Boonyasiri,
Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H.,
Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L.C., van Elsland,
S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P.G.T., Walters,
C., Winskill, P., Whittaker, C., Donnelly, C.A., Riley, S. & Ghani, A.C.
2020. Report 9: Impact of nonpharmaceutical interventions (NPIs) to reduce
COVID-19 mortality and healthcare demand.
Imperial College COVID-19 Response Team. pp. 1-20. https://doi.org/10.25561/77482.
Ferguson, N., Cummings, D.A.T., Fraser, C., Cajka, J.C.,
Cooley, P.C. & Burke, D.S. 2006. Strategies for mitigating an influenza
pandemic. Nature 442: 448-452.
Forster, P., Forster, L., Renfrew, C. & Forster, M.
2020. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences 117(17): 9241-9243.
Freeman, L.C. 1979. Centrality in social networks conceptual
clarification. Social Networks 1(3):
215-239.
Freeman, L.C. 1977. A set of measures of centrality based on
betweenness. Sociometry 40(1): 35-41.
Fu, F., Christakis, N.A. & Fowler, J.H. 2017. Duelling
biological and social contagions. Scientific
Reports 7: 43634.
Herrera, J.L., Ravi Srinivasan, Brownstein, J.S., Galvani,
A.P. & Meyers, L.A. 2016. Disease surveillance on complex social networks. PLoS Comput. Biol. 12(7): e1004928.
Holme, P. 2013. Epidemiologically optimal static networks
from temporal network data. PLoS Comput.
Biol. 9(7): e1003142.
Holme, P. & Luis, R.E.C. 2019. Impact of misinformation
in temporal network epidemiology. Network
Science 7(1): 52-69.
Holme, P. & Litvak, N. 2017. Cost-efficient vaccination
protocols for network epidemiology. PLoS
Comput. Biol. 13: e1005696.
Holme, P., Kim, B., Yoon, C. & Han, S. 2002. Attack
vulnerability of complex networks. Phys.
Rev. E 65: 056109.
Hunter, E., Namee, M.B. & Kelleher, J. 2018. An
open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS ONE 13(12): e0208775.
Girvan, M. & Newman, M.E.J. 2002. Community structure in
social and biological networks. Proc.
Natl. Acad. Sci. U.S.A. 99: 7821-7826.
Keeling, M.J. & Eames, K.T.D. 2005. Review: Networks and
epidemic models. J.R. Soc. Interface 2:
295-307.
Lee, S., Rocha, L.E.C., Liljeros, F. & Holme, P. 2012.
Exploiting temporal network structures of human interaction to effectively
immunize populations. PLoS ONE 7(5):
e36439.
Liu, Q., Ajelli, M., Aleta, A., Merler, S., Moreno, Y. &
Vespignani. 2018. Measurability of the epidemic reproduction number in
data-driven contact networks. PNAS 115(50): 12680-12685.
Newman, M.E.J. 2010. Networks:
An Introduction. New York: Oxford University Press Inc.
Nur Fariha Syaqina Zulkepli, Mohd Salmi Md Noorani, Fatimah
Abdul Razak, Munira Ismail & Mohd Almie Alias. 2020. Pendekatan baharu
untuk mengelompok stesen pengawasan kualiti udara menggunakan homologi gigih. Sains Malaysiana 49(4): 963-970.
Ozella, L., Paolotti, D., Lichand, G., Rodriguez, J.P.,
Haenni, S., Phuka, J., Leal-Neto, O.B. & Cattuto, C. 2012. Using wearable
proximity sensors to characterize social contact patterns in a village of rural
Malawi. Physics and Society arXiv:
2012.10983.
Pastor-Satorras, R. &Vespignani, A. 2002. Immunization
of complex networks. Phys. Rev. E 65:
036104.
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. &
Vespignani, A. 2015. Epidemic processes in complex networks. Rev. Mod. Phys. 87: 925.
Perra, N. 2021. Non-pharmaceutical interventions during the
COVID-19 pandemic: A review. Phys. Rep. doi:
10.1016/j.physrep.2021.02.001.
Rahman, N.A.A., Razak, F.A. & Dzul-Kifli, S.C. 2020. The
effect of peer tutoring on the process of learning mathematical proofs. Advances in Mathematics: Scientific Journal 9: 7375-7384.
Ratanarajah, J., Razak, F.A. & Zamzuri, Z.H. 2020. Peer
tutor network and academic performance: A UKM pilot study. AIP Conference Proceedings 2266: 050013.
Razak, F.A. & Shahabuddin, F.A. 2018. Malaysian
household income distribution: A fractal point of view. Sains Malaysiana 47(9): 2187-2194.
Razak, F.A., Shahabuddin, F.A. & Zamri, N.S.N. 2019.
Analyzing research collaborations within the School of Mathematical Sciences,
UKM using graph theory. IOP Conf. Series:
J. Phys.: Conf. Ser. 1212: 012033.
Rudiger, S., Plietzsch, A., Sagués, F., Sokolov, I.M. &
Kurths, J. 2020. Epidemics with mutating infectivity on small-world networks. Scientific Report 10: 5919.
VanderWeele, T.J. & Christakis, N.A. 2019. Network
multipliers and public health. International
Journal of Epidemiology 48(4): 1032-1037.
Vibouda, C. & Vespignani, A. 2019. The future of
influenza forecast. PNAS 116(8):
2802-2804.
Watanabe, T. & Masuda, N. 2010. Enhancing the spectral
gap of networks by node removal. Phys.
Rev. E 82: 046102.
Yang, C.H. & Jung, H. 2020. Topological dynamics of the
2015 South Korea MERS-CoV spread-on contact networks. Scientific Reports 10: 4327.
*Corresponding author; email:
fatima84@ukm.edu.my
|