Sains Malaysiana 50(5)(2021): 1497-1509

http://doi.org/10.17576/jsm-2021-5005-28

 

Modelling the Spread of COVID-19 on Malaysian Contact Networks for Practical Reopening Strategies in an Institutional Setting

(Pemodelan Penyebaran COVID-19 ke atas Rangkaian Kontak di Malaysia untuk Strategi Pembukaan Semula yang Praktikal dalam Sesuatu Institusi)

 

FATIMAH ABDUL RAZAK1*& PAUL EXPERT2,3

 

1Department of Mathematical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Global Digital Health Unit, Imperial College London, SW7 2AZ, United Kingdom

 

3Tokyo Tech World Research Hub Initiative, Tokyo Institute of Technology, Japan

 

Received: 31 January 2021/Accepted: 17 March 2021

 

ABSTRACT

Reopening strategies are crucial to balance efforts of economic revitalization and bringing back a sense of normalcy while mitigating outbreaks and effectively flattening the infection curve. This paper proposes practical reopening, monitoring and testing strategies for institutions to reintroduce physical meetings based on SIR simulations run on a student friendship network collected pre-COVID-19. These serve as benchmarks to assess several testing strategies that can be applied in physical classes. Our simulations show that the best outbreak mitigation results are obtained with full knowledge of contact, but are also robust to non-compliance of students to new social interaction guidelines, simulated by partial knowledge of the interactions. These results are not only applicable to institutions but also for any organization or company wanting to navigate the COVID-19 ravaged world.

 

Keywords: Contact networks; COVID-19; friendship networks; reopening strategies; SIR on networks

 

ABSTRAK

Strategi pembukaan semula sangat penting dalam menyeimbangkan usaha pemulihan semula ekonomi tanpa mengabaikan usaha melandaikan lengkung jangkitan. Makalah ini mencadangkan beberapa strategi pengawasan dan pengujian yang praktikal bagi mengadakan perjumpaan fizikal berdasarkan simulasi ke atas rangkaian persahabatan pelajar yang dikumpul sebelum penyebaran COVID-19. Simulasi ini boleh digunakan sebagai penanda aras untuk menguji beberapa strategi pembukaan semula yang boleh diguna pakai dalam kelas. Simulasi kami menunjukkan bahawa strategi terbaik diperoleh dengan mengetahui maklumat penuh rangkaian perhubungan. Namun begitu, kami juga mencadangkan strategi yang tidak memerlukan maklumat rangkaian. Dapatan ini bukan sahaja terhad kepada institusi tetapi ia juga boleh diguna pakai oleh sebarang organisasi atau syarikat dalam menghadapi norma baharu era COVID-19.

 

Kata kunci: COVID-19; rangkaian kontak; rangkaian persahabatan; SIR dalam rangkaian; strategi pembukaan semula

 

REFERENCES

Aleta, A., Martin-Corral, D., Piontti, A.P. & Ajelli, M. 2020. Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic. Nature Human Behaviour 4(9): 964-971.

Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., Lehmann, S., Salathé, M. & Lepri, B. 2021. Digital proximity tracing on empirical contact networks for pandemic control. Nat. Commun. 12(1): 1655.

Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Piontti, A.P., Kunpeng, M., Rossi, L., Kaiyuan, S., Viboud, C., Xiong, X., Yu, H., Halloran, M.E., Longini Jr., I.M. & Vespignani, A. 2020. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368(6489) 395-400.

Feld, S.L. 1991. Why your friends have more friends than you do. American Journal of Sociology 96(6): 1464-1477.

Ferguson, N., Laydon, D., Nedjati-Gilani, G., Natsuko, Imai., Ainslie, K., Baguelin, M., Sangeeta Bhatia, Adhiratha Boonyasiri, Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L.C., van Elsland, S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P.G.T., Walters, C., Winskill, P., Whittaker, C., Donnelly, C.A., Riley, S. & Ghani, A.C. 2020. Report 9: Impact of nonpharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team. pp. 1-20. https://doi.org/10.25561/77482.

Ferguson, N., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C. & Burke, D.S. 2006. Strategies for mitigating an influenza pandemic. Nature 442: 448-452.

Forster, P., Forster, L., Renfrew, C. & Forster, M. 2020. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences 117(17): 9241-9243.

Freeman, L.C. 1979. Centrality in social networks conceptual clarification. Social Networks 1(3): 215-239.

Freeman, L.C. 1977. A set of measures of centrality based on betweenness. Sociometry 40(1): 35-41.

Fu, F., Christakis, N.A. & Fowler, J.H. 2017. Duelling biological and social contagions. Scientific Reports 7: 43634.

Herrera, J.L., Ravi Srinivasan, Brownstein, J.S., Galvani, A.P. & Meyers, L.A. 2016. Disease surveillance on complex social networks. PLoS Comput. Biol. 12(7): e1004928.

Holme, P. 2013. Epidemiologically optimal static networks from temporal network data. PLoS Comput. Biol. 9(7): e1003142.

Holme, P. & Luis, R.E.C. 2019. Impact of misinformation in temporal network epidemiology. Network Science 7(1): 52-69.

Holme, P. & Litvak, N. 2017. Cost-efficient vaccination protocols for network epidemiology. PLoS Comput. Biol. 13: e1005696.

Holme, P., Kim, B., Yoon, C. & Han, S. 2002. Attack vulnerability of complex networks. Phys. Rev. E 65: 056109.

Hunter, E., Namee, M.B. & Kelleher, J. 2018. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS ONE 13(12): e0208775.

Girvan, M. & Newman, M.E.J. 2002. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99: 7821-7826.

Keeling, M.J. & Eames, K.T.D. 2005. Review: Networks and epidemic models. J.R. Soc. Interface 2: 295-307.    

Lee, S., Rocha, L.E.C., Liljeros, F. & Holme, P. 2012. Exploiting temporal network structures of human interaction to effectively immunize populations. PLoS ONE 7(5): e36439. 

Liu, Q., Ajelli, M., Aleta, A., Merler, S., Moreno, Y. & Vespignani. 2018. Measurability of the epidemic reproduction number in data-driven contact networks. PNAS 115(50): 12680-12685.   

Newman, M.E.J. 2010. Networks: An Introduction. New York: Oxford University Press Inc.

Nur Fariha Syaqina Zulkepli, Mohd Salmi Md Noorani, Fatimah Abdul Razak, Munira Ismail & Mohd Almie Alias. 2020. Pendekatan baharu untuk mengelompok stesen pengawasan kualiti udara menggunakan homologi gigih. Sains Malaysiana 49(4): 963-970.

Ozella, L., Paolotti, D., Lichand, G., Rodriguez, J.P., Haenni, S., Phuka, J., Leal-Neto, O.B. & Cattuto, C. 2012. Using wearable proximity sensors to characterize social contact patterns in a village of rural Malawi. Physics and Society arXiv: 2012.10983.

Pastor-Satorras, R. &Vespignani, A. 2002. Immunization of complex networks. Phys. Rev. E 65: 036104.

Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. 2015. Epidemic processes in complex networks. Rev. Mod. Phys. 87: 925.          

Perra, N. 2021. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Phys. Rep. doi: 10.1016/j.physrep.2021.02.001.

Rahman, N.A.A., Razak, F.A. & Dzul-Kifli, S.C. 2020. The effect of peer tutoring on the process of learning mathematical proofs. Advances in Mathematics: Scientific Journal 9: 7375-7384.

Ratanarajah, J., Razak, F.A. & Zamzuri, Z.H. 2020. Peer tutor network and academic performance: A UKM pilot study. AIP Conference Proceedings 2266: 050013.

Razak, F.A. & Shahabuddin, F.A. 2018. Malaysian household income distribution: A fractal point of view. Sains Malaysiana 47(9): 2187-2194.

Razak, F.A., Shahabuddin, F.A. & Zamri, N.S.N. 2019. Analyzing research collaborations within the School of Mathematical Sciences, UKM using graph theory. IOP Conf. Series: J. Phys.: Conf. Ser. 1212: 012033.

Rudiger, S., Plietzsch, A., Sagués, F., Sokolov, I.M. & Kurths, J. 2020. Epidemics with mutating infectivity on small-world networks. Scientific Report 10: 5919.

VanderWeele, T.J. & Christakis, N.A. 2019. Network multipliers and public health. International Journal of Epidemiology 48(4): 1032-1037.

Vibouda, C. & Vespignani, A. 2019. The future of influenza forecast. PNAS 116(8): 2802-2804.

Watanabe, T. & Masuda, N. 2010. Enhancing the spectral gap of networks by node removal. Phys. Rev. E 82: 046102.

Yang, C.H. & Jung, H. 2020. Topological dynamics of the 2015 South Korea MERS-CoV spread-on contact networks. Scientific Reports 10: 4327.

 

*Corresponding author; email: fatima84@ukm.edu.my

 

 

 

previous