Sains Malaysiana 50(6)(2021): 1577-1588
http://doi.org/10.17576/jsm-2021-5006-06
Zooplankton Community Structure in
Relation to the Water Quality and Seston Fatty Acid Content in the Coastal
Waters of Penang, Malaysia
(Struktur Komuniti Zooplankton Berkaitan dengan Kualiti Air dan Kandungan Asid Lemak Seston di Perairan Pantai Penang,
Malaysia)
WAN
MAZNAH, W. O.1,2,3*, NUR ‘AIN KASSIM1 & ZUBIR DIN1
1School of
Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
2Centre for Marine
and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800 Penang, Malaysia
3River Engineering
and Urban Drainage Centre (REDAC), Universiti Sains Malaysia, Seri Empangan, 14300 Nibong Tebal, Penang, Malaysia
Received:
25 February 2020/Accepted: 8 October 2020
ABSTRACT
Zooplankton
community structure and seston fatty acid content in
relation with water quality characteristics at selected sampling stations of
Penang coastal waters were determined. Water and zooplankton samples were
collected on five sampling occasions from July 2009 until April 2011.
Zooplankton samples were collected by horizontal towing with plankton net
(WP-2) and a fraction of the samples was used to get seston population for fatty acid analysis. Phylum Arthropoda dominated the sampling
area with 78.80% of relative abundance, where Copepoda was the most abundant. Other phyla such as Chordata (9.10%), Cycliophora (6.12%), Actinopoda (2.08%), Rotifera (2.57%), Annelida (0.63%), Cnidaria
(0.51%), and Chaetognatha (0.19%) were accounted in
small abundance. Kuala Juru Station, which was highly
impacted by human activities had the highest relative abundance and Jerejak Station (control station and considered to have low
impact by anthropogenic activities) had the lowest relative abundance.
Zooplankton diversity was quite low at all stations, might be due to large
abundance of dominant taxa. The dominant fatty acid methyl esters (FAMEs)
detected on seston consisted of SAFA (C16:0, C14:0,
and C18:0), MUFA (C16:0, C14:0, and C18:0), PUFA (C18:2n6c and C20:5n3) and
HUFA (C22:6n3 or DHA). Zooplankton community was influenced by food
availability (phytoplankton, as measured by chlorophyll a and fatty acid composition in seston) and water
quality.
Keywords:
Arthropoda; fatty acid; Malaysia; Rotifera;
zooplankton diversity
ABSTRAK
Struktur komuniti Zooplankton dan kandungan asid lemak seston berkaitan dengan ciri-ciri kualiti air di stesen pensampelan terpilih di perairan pantai Pulau Pinang telah ditentukan. Sampel air dan
zooplankton dikumpulkan pada lima stesen persampelan dari Julai 2009 hingga April 2011. Sampel zooplankton dikumpulkan dengan cara menunda secara mendatar menggunakan jaring plankton (WP-2) dan sebahagian dari sampel digunakan untuk analisis asid lemak populasi seston. Phylum Arthropoda mendominasi kawasan persampelan dengan 78.80% kelimpahan relatif dengan Copepoda adalah yang paling banyak. Phyla lain seperti Chordata (9.10%), Cycliophora (6.12%), Actinopoda (2.08%), Rotifera (2.57%), Annelida (0.63%), Cnidaria (0.51%) dan Chaetognatha (0.19%) terdapat dalam kelimpahan yang kecil. Stesen Kuala Juru, yang sangat dipengaruhi oleh aktiviti manusia mempunyai kelimpahan relatif tertinggi dan Stesen Jerejak (stesen kawalan dan dianggap mempunyai kesan yang rendah oleh aktiviti antropogenik) mempunyai kelimpahan relatif terendah. Kepelbagaian zooplankton agak rendah di semua stesen, mungkin disebabkan oleh kepelbagaian taksonomi yang dominan. Asid lemak metil ester (FAMEs) dominan yang dikesan pada
plankton terdiri daripada SAFA (C16: 0, C14: 0 dan C18: 0), MUFA (C16: 0, C14: 0 dan C18: 0), PUFA (C18:
2n6c dan C20: 5n3) dan HUFA (C22: 6n3 atau DHA). Komuniti zooplankton dipengaruhi oleh ketersediaan makanan (fitoplankton, seperti yang diukur oleh klorofila dan komposisi asid lemak seston) dan kualiti air.
Kata kunci: Arthropoda; asid lemak; kepelbagaian zooplankton; Malaysia; Rotifera
REFERENCES
Abel,
K., Deschmertzing, H. & Peterson, J.I. 1963.
Classification of microorganisms by analysis of chemical composition. Journal
of Bacteriology 85(5): 1039-1044.
Adrian,
R. & Schneider-Olt, B. 1999. Top-down effects of
crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal
of Plankton Research 21(11): 2175-2190.
Anderson,
T.R. & Pond, D.W. 2000. Stoichiometric theory extended to micronutrients:
Comparison of the roles of essential fatty acids, carbon, and nitrogen in the
nutrition of marine copepods. Limnology and Oceanography 45(5):
1162-1167.
APHA.
1998. Standard Methods for the
Examination of Water and Wastewater. 20th ed. Washington: American Public Health Association.
Aquino,
M.R.Y., Cho, C.D., Cruz, M.A.S., Saguiguit, M.A.G.
& Papa, R.D.S. 2008. Zooplankton composition and diversity in Paoay Lake, Luzon Is., Philippines. Philippine Journal
of Science 137(2): 169-177.
Arora,
J. & Mehra, N.K. 2003. Seasonal dynamics of
rotifers in relation to physical and chemical conditions of the river Yamuna
(Delhi) India. Hydrobiologia 491(1): 101-109.
Arts,
M.T., Brett, M.T. & Kainz, M.J. 2009. Lipids
in Aquatic Ecosystems. New York: Springer.
Bergé, J.P. & Barnathan, G. 2005. Fatty acids from lipids of marine
organisms: Molecular diversity, roles as biomarkers, biologically active
compounds, and economical aspects. Advances in Biochemical
Engineering/Biotechnology 96: 49-125.
Brepohl, D.C. 2005. Fatty
acid distribution in marine, brackish and freshwater plankton during mesocosm
experiments. Christian-Albrechts-Universitat.
Ph.D. Thesis (Unpublished).
Brett,
M.T., Müller-Navarra, D.C. & Persson, J. 2009. Crustacean zooplankton fatty
acid composition. In Lipids in Aquatic Ecosystems, edited by Arts, M.T.
Arts. Berlin, Heidelberg: Springer. pp. 115-146.
Burns,
C.W., Brett, M.T. & Schallenberg, M. 2011. A
comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshwater Biology 56(5): 889-903.
Carter,
J.L. & Schindler, D.E. 2012. Responses of zooplankton populations to four
decades of climate warming in lakes of southwestern Alaska. Ecosystems 15(6): 1010-1026.
Castellani,
C., Irigoien, X., Harris, R.P. & Holliday, R.P.
2007. Regional and temporal variation of Oithona spp. biomass, stage
structure and productivity in the Irminger Sea, North
Atlantic. Journal of Plankton Research 29(12): 1051-1070.
Chew,
L.L. & Chong, V. 2011. Copepod community structure and abundance in a
tropical mangrove estuary, with comparisons to coastal waters. Hydrobiologia 666(1): 127-143.
Chi,
X., Javidpour, J., Sommer, U. & Mueller-Navarra,
D. 2018. Tracking fatty acids from phytoplankton to jellyfish polyps under
different stress regimes: A three trophic levels experiment. Frontiers in
Ecology Evolution 6: 118.
Choi,
W.R., Fang, L.S., Wang, W.H. & Tew, K.S. 2011.
Environmental influence on coastal phytoplankton and zooplankton diversity: A
multivariate statistical model analysis. Environmental Monitoring and
Assessment 184(9): 5679-5688.
Ciros-Pérez, J.,
Ortega-Mayagoitia, E. & Alcocer,
J. 2015. The role of ecophysiological and behavioral raits in structuring the zooplankton assemblage in a deep,
oligotrophic, tropical lake. Limnology Oceanography 60(6): 2158-2172.
Colombo,
S., Parrish, C. & Whiticar, M. 2016. Fatty acid
stable isotope signatures of molluscs exposed to
finfish farming outputs. Aquaculture Environment Interactions 8:
611-617.
Davies,
O.A. & Otene, B.B. 2009. Zooplankton community in Minichinda Stream, Port Harcourt, Rivers State,
Nigeria. European Journal of Scientific Research 26(4): 490-498.
Day,
J.H. 1967a. A Monograph on the Polychaeta
of Southern Africa. Part 1. London: Trustees of the British Museum (Natural
History).
Day,
J.H. 1967b. A Monograph on the Polychaeta
of Southern Africa. Part 11. London: Trustees of The British Museum
(Natural History).
Desvilettes, C.H., Bourdier, G., Amblard, C.H. &
Barth, B. 1997. Use of fatty acids for the assessment of zooplankton grazing on
bacteria, protozoans and microalgae. Freshwater Biology 38(3): 629-637.
Garrison,
T. 2005. Oceanography: An Invitation to
Marine Science. 5th ed. California: Brooks/Cole-Thomson Learning.
Gosner, K.L. 1971. Guide to Identification of Marine and
Estuarine Invertebrates. New Jersey: John Wiley & Sons, Inc. p. 303.
Grosse,
J., Brussaard, C. & Boschker,
H. 2019. Nutrient limitation driven dynamics of amino acids and fatty acids in
coastal phytoplankton. Limnology and Oceanography 64(1): 302-316.
Gulati,
R.D. & Demott, W.R. 1997. The role of food
quality for zooplankton: Remarks on the state-of-the-art, perspectives and
priorities. Freshwater Biology 38(3): 591-596.
Hamm,
C.E. & Rousseou, V. 2003. Composition,
assimilation and degradation of phaeocystis globosa-derived fatty acids in the North Sea. Journal of
Sea Research 50(4): 271-283.
Idrus, F.A., Chong,
M.D., Rahim, N.S., Mohd Basri,
M. & Musel, J. 2017. Physicochemical parameters
of surface seawater in Malaysia exclusive economic zones off the coast of
Sarawak. Borneo Journal of Resource Science and Technology 7(1): 1-10.
Johan,
I., Idris, A.G., Norlita, I. & Mohd Affandy, B. 2000. The
zooplankton community at Port Klang and the
surrounding waters. In Towards Sustainable Management of the Straits of
Malacca, edited by Shariff, M., Yusoff, F.M.,
Gopinath, N., Ibrahim, H.M. & Nik Mustapha, R.A. Serdang: Universiti Putra Malaysia. pp. 179-187.
Jónasdóttir, S.H. 2019. Fatty
acid profiles and production in marine phytoplankton. Marine Drugs 17(3): 151-171.
Kattner, G., Krause, M.
& Thrams, J. 1981. Lipid composition of some
typical North Sea copepods. Marine Ecology Progress Series 4: 69-74.
Keen,
A.M. 1971. Seashells of tropical West Africa. California: Stanford
University Press. p. 1064.
Lichti, D.A., Rinchard, J. & Kimmel, D.G. 2017. Changes in
zooplankton community, and seston and zooplankton
fatty acid profiles at the freshwater/saltwater interface of the Chowan River,
North Carolina. Peer J. 16(5): e3667.
Lincoln,
R.J. & Sheals, G. 1979. Invertebrate Animal
Collection and Preservation. United Kingdom: Cambridge University Press.
pp. 46-136.
Madhupratap, M. & Onbe, T. 2004. Structure and species diversity of the
zooplankton community of the Inland Sea of Japan. Estuarine, Coastal, and
Shelf Science 23(5): 725-737.
Maznah, W.W. & Mansor, M. 2002. Aquatic pollution assessment based on
attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiologia 487(1): 229-241.
Maznah, W.W., Intan, S., Sharifah, R. & Lim, C.C. 2018. Lentic and
lotic assemblages of zooplankton in a tropical reservoir, and their association
with water quality conditions. International Journal of Environmental
Science and Technology 15(3): 533-542.
McMeans,
B.C., Koussoroplis, A.M. & Kainz,
M.J. 2015. Effects of seasonal seston and temperature
changes on lake zooplankton fatty acids. Limnology and Oceanography 60(2): 573-583.
Morris,
P.A. 1973. A Field Guide to Shells of the Atlantic and Gulf Coast and the
West Indies. Boston: Houghton Miffin Co. p. 329.
Napolitano,
G.E., Pollero, R.J., Gayoso,
A.M., Macdonald, B.A. & Thompson, R.J. 1997. Fatty acid as trophic markers
of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina)
and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and
Ecology 25(8): 739-755.
Naylor,
E. 1972. British Marine Isopods. Keys and Notes for the Identification of
the Species. London: Synopses of British Fauna, Academic Press. p. 86.
Olson,
M.B. & Daly, K.L. 2013. Micro-grazer biomass, composition and distribution
across prey resource and dissolved oxygen gradients in the far eastern tropical
north Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 75: 28-38.
Persson,
J. & Vrede, T. 2006. Polyunsaturated fatty acids
in zooplankton: Variation due to taxonomy and trophic position. Freshwater
Biology 51(5): 887-900.
Ravet, J.L., Brett,
M.T. & Arhonditsis, G.B. 2010. The effects of seston lipids on zooplankton fatty acid composition in Lake
Washington, Washington, USA. Ecology 91(1): 180-190.
Rezai, H., Yusoff, F.M., Arshad, A., Kawamura, A., Nishida, S. &
Ross, O.B.H. 2004. Spatial and temporal distribution of copepods in the Straits
of Malacca, Zoological Studies 43: 486-497.
Sameoto, D., Wiebe, P.,
Runge, J., Postel, L., Dunn, J., Miller, C. &
Coombs, S. 2000. Collecting zooplankton. In ICES Zooplankton Methodology
Manual, edited by Harris, R., Wiebe, P., Lenz, J., Skjoldal,
H.R. & Hauntley, M. London: Academic Press. pp.
55-82.
Santhakumari, V.
1991. Zooplankton standing stock and community structure along Karnataka Coast,
west coast of India. Journal of the Indian Fisheries Association 21:
21-30.
Steinberg,
D.K. & Landry, M.R. 2017. Zooplankton and the ocean carbon cycle. Annual
Review of Marine Science 9: 413-444.
Sudara, S. & Udomkit, A. 1984. Distribution of important zooplankton in
the inner part of the gulf of Thailand. Proceeding of the 3rd Seminar on The
Water Quality and the Quality og Living Resources in
Thai Waters. pp. 425-435.
Tian,
W., Zhang, H., Zhang, J., Zhao, L., Miao, M. & Huang, H. 2017. Responses of
zooplankton community to environmental factors and phytoplankton biomass in
Lake Nansihu, China. Pakistan Journal of
Zoology 49(2): 461-470.
Tiselius,
P., Hansen, B.W. & Calliari, D. 2012. Fatty acid
transformation in zooplankton: From seston to
benthos. Marine Ecology Progress Series 446: 131-144.
Villa,
H., Quintela, J., Coelho, M.L., Icely,
J.D. & Andrade, J.D. 1997. Phytoplankton biomass and zooplankton abundance
on the south coast of Portugal (Sagres), with special
reference to spawning of Loligo vulgaris. Scientia Marina 61(2): 123-129.
Wei,
C.J. 2012. Zooplankton community structure in the coastal waters of Manjung, Perak and Penang National Park, Penang. School of
Biological Sciences. Universiti Sains Malaysia. MSc Thesis (Unpublished).
Werbrouck, E., Tiselius,
P., Van Gansbeke, D., Cervin,
G., Vanreusel, A. & De Troch, M. 2016.
Temperature impact on the trophic transfer of fatty acids in the congeneric
copepods Acartia tonsa and Acartia clausi. Journal
of Sea Research 112: 41-48.
Yoshida,
T., Toda, T., Yusoff, M. & Toman,
B.H.R. 2006. Seasonal variation of zooplankton community in the coastal waters
of the Straits of Malacca. Coastal Marine Science 30(1): 320-327.
*Corresponding
author; email: wmaznah@usm.my
|