Sains Malaysiana 50(6)(2021): 1621-1638
http://doi.org/10.17576/jsm-2021-5006-10
Screening of Rice Varieties Based on
Remodeling of Root Architecture Linked to Enhanced Phosphorus Transporters and
Ethylene Signaling for Better Phosphorous Acquisition under Limiting Conditions
(Saringan Varieti Padi berdasarkan Pembentukan Semula Arkitektur Akar berkait dengan Pengangkut Fosforus dan Pemberian Isyarat Etilena untuk Pemerolehan Fosforus yang Lebih Baik dalam Keadaan Terhad)
ALVEENA ZULFIQAR1, BEENISH JEHAN AZHAR1,
AROOSA ZEB1, ASYIA ZEENAT1, SITWAT AMAN1, SCOTT A HECKERTHORN2 &
SAMINA N SHAKEEL1,3*
1Department of
Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
2Department of Environmental Sciences, University of
Toledo, Toledo, Ohio 43606, USA
3Department of Biological Sciences, Dartmouth College, Hanover,
NH, USA
Received: 13 November 2019/Accepted:
6 November 2020
ABSTRACT
Root architectural modifications in response
to altered nutrient level can be used as selection marker for better adapted
rice varieties. In this study, we screened six local rice varieties commonly
grown in Pakistan, using their unique root architecture and several molecular
markers to identify best adapted local variety under phosphorus limiting
conditions. Our data showed that rice variety with significant changes in its
three-dimensional root architecture system (RSA) and enhanced expression of
phosphorus transporters (OsPT2, OsPT4 and OsPT6) is the best variety to handle
stress as compared to other varieties. Along with development of screening
strategy/method, our data provided evidence that phosphorus starvation leads to
upregulation of stress hormone ethylene, which regulates root elongation and
root hair development therefore facilitating root architecture modification. We
then further checked, how to mitigate or enhance phosphorus starvation
responses by application of hormones exogenously, our results showed that
ethylene application/treatment enhances phosphorus starvation responses,
whereas cytokinin on the other hand reverses deficiency effects which
implicates hormonal cross talk is key to modulate P-deficiency responses in
rice. This study provides an easy and quick method of analysis of root
architecture as physiological marker for rice screening and improve crop yield
by selecting best adapted variety for P deficient soils. In future, detail
study for understanding phytohormone mediated transcriptomic changes in
response to nutrient deficiency and in correlation with physiological response
will help to select better adapted varieties that will eventually result in
increase of rice yield.
Keywords: Cytokinin; ethylene biosynthesis; nutritional stress; phosphate transporters;
root architecture
ABSTRAK
Pengubahsuaian arkitektur akar sebagai tindak balas terhadap perubahan tahap nutrien dapat digunakan sebagai penanda pilihan bagi varieti padi yang lebih sesuai. Dalam kajian ini, kami meneliti enam varieti padi tempatan yang biasanya ditanam di Pakistan dengan menggunakan arkitektur akarnya yang unik dan beberapa penanda molekul untuk mengenal pasti varieti tempatan yang paling sesuai dalam keadaan yang membatasi fosforus. Data kami menunjukkan bahawa varieti padi dengan perubahan ketara dalam sistem arkitektur akar tiga dimensi (RSA) dan peningkatan ekspresi pengangkut fosforus (OsPT2,
OsPT4 dan OsPT6) adalah varieti yang terbaik untuk menangani tekanan berbanding dengan varieti lain. Seiring dengan perkembangan strategi/kaedah penyaringan, data kami memberikan bukti bahawa kebuluran fosforus membawa kepada peningkatan etilena hormon tekanan yang mengatur pemanjangan akar dan pertumbuhan rambut akar sehingga memudahkan pengubahsuaian arkitektur akar. Kami kemudiannya mengkaji lebih lanjut tentang bagaimana mengurangkan atau meningkatkan tindak balas kebuluran fosforus dengan penggunaan hormon eksogen. Keputusan kami menunjukkan bahawa aplikasi/rawatan etilena meningkatkan tindak balas kebuluran fosforus, sedangkan sitokinin sebaliknya membalikkan kesan kekurangan yang menyiratkan perbincangan silang hormonal adalah kunci untuk memodulasi tindak balas kekurangan P dalam padi. Kajian ini memberikan kaedah analisis arkitekturakar yang mudah dan cepat sebagai penanda fisiologi untuk penyaringan padi dan meningkatkan hasil tanaman dengan memilih varieti yang paling sesuai bagi tanah yang kekurangan P. Pada masa depan, kajian terperinci untuk memahami perubahan transkriptom yang dimediasi fitohormon sebagai tindak balas terhadap kekurangan nutrien dan berkorelasi dengan tindak balas fisiologi akan membantu untuk memilih varieti yang lebih baik yang akhirnya akan menghasilkan peningkatan hasil padi.
Kata kunci: Arkitektur akar; biosintesis etilena; pengangkut fosforus; sitokinin; tekanan pemakanan
REFERENCES
Abbas,
M., Irfan, M., Shah, J. & Memon, M. 2018. Intra-specific variations among wheat genotypes for phosphorus use
efficiency. Asian Journal of Agriculture and Biology 6(1): 35-45.
Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W.,
Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A.J. & Xu, G. 2009. Two rice
phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and
kinetic properties in uptake and translocation. The Plant Journal: For Cell
and Molecular Biology 57(5):
798-809.
Akhtar, M.S., Oki, Y., Nakashima, Y., Adachi,
T. & Nishigaki, M. 2016. Phosphorus stress-induced differential growth, and
phosphorus acquisition and use efficiency by spring wheat cultivars. Communications
in Soil Science and Plant Analysis 47(sup1):
15-27.
Aziz, N.I.H.A. & Hanafiah, M.M. 2020.
Life cycle analysis of biogas production from anaerobic digestion of palm oil
mill effluent. Renewable Energy 145:
847-857.
Aziz, T., Finnegan, P.M., Lambers, H. &
Jost, R. 2014. Organ-specific phosphorus-allocation patterns and transcript
profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant,
Cell and Environment 37(4):
943-960.
Campos, P., Borie, F., Cornejo, P.,
López-Ráez, J.A., López-García, Á. & Seguel, A. 2018. Phosphorus
acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key
factor to wheat and barley cropping? Frontiers in Plant Science 9: 752.
Carstensen, A., Herdean, A., Schmidt, S.B.,
Sharma, A., Spetea, C., Pribil, M. & Husted, S. 2018. The impacts of
phosphorus deficiency on the photosynthetic electron transport chain. Plant
Physiology 177(1): 271-284.
Che Mat, N., Bhuiyan, M., Senan, S., Yaakob,
Z. & Wickneswari, R. 2015. Selection of high yielding Jatropha curcas L. accessions for elite hybrid seed production. Sains Malaysiana 44(11): 1567-1572.
Chithrameenal, K., Alagarasan, G.,
Raveendran, M., Robin, S., Meena, S., Ramanathan, A. & Ramalingam, J. 2018.
Genetic enhancement of phosphorus starvation tolerance through marker assisted
introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight
and blast resistance. PLoS ONE 13(9):
0204144.
Dai, X., Wang, Y., Yang, A. & Zhang, W.H.
2012. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the
regulation of phosphate-starvation responses and root architecture in rice. Plant
Physiology 159(1): 169-183.
Elser, J.J. 2012. Phosphorus: A limiting
nutrient for humanity? Current Opinion in Biotechnology 23(6): 833-838.
Fageria, N.K., Santos, A.B. & Heinemann,
A.B. 2011. Lowland rice genotypes evaluation for phosphorus use efficiency in
tropical lowland. Journal of Plant Nutrition 34(8): 1087-1095.
Fahad, S., Hussain, S., Bano, A., Saud, S.,
Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., Tabassum, M.A.,
Chun, M.X., Afzal, M., Jan, A., Jan, M.T. & Huang, J. 2015. Potential role
of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses:
Consequences for changing environment. Environmental Science and Pollution
Research International 22(7):
4907-4921.
Galkovskyi, T., Mileyko, Y., Bucksch, A.,
Moore, B., Symonova, O., Price, C.A., Topp, C.N., Iyer-Pascuzzi, A.S., Zurek,
P.R., Fang, S., Harer, J., Benfey, P.N. & Weitz, J.S. 2012. GiA roots:
Software for the high throughput analysis of plant root system architecture. BMC
Plant Biology 12: 116.
Goff, S.A., Ricke, D., Lan, T.H., Presting,
G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H.,
Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Markus Lange, B.,
Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U.,
Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C.,
Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe,
S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S.,
Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N.,
Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A.
& Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. aponica). Science 296(5565):
92-100.
Gu, M., Chen, A., Sun, S. & Xu, G. 2016.
Complex regulation of plant phosphate transporters and the gap between
molecular mechanisms and practical application: What is missing? Molecular
Plant 9(3): 396-416.
Harun, S.N., Hanafiah, M.M. & Abd. Aziz,
N.I.H. 2020. An LCA-based environmental performance of rice production for
developing a sustainable agri-food system in Malaysia. Environmental
Management 67(2): 146-161.
Hassan, M., Hanafiah, M., Taha, Z. &
Hadi, I. 2020. Effect of low-intensity laser irradiation on field performance
of maize (Zea mays L.) emergence, phenological and seed quality
characteristics. Applied Ecology and Environmental Research 18(4): 6009-6023.
Hasan, Md.M., Hasan, Md.M., Teixeira da
Silva, J.A. & Li, X. 2016. Regulation of phosphorus uptake and utilization:
Transitioning from current knowledge to practical strategies. Cellular and
Molecular Biology Letters 21(7): 1-19.
Irfan, M., Shah, J.A. & Abbas, M. 2017.
Evaluating the performance of mungbean genotypes for grain yield, phosphorus
accumulation and utilization efficiency. Journal of Plant Nutrition 40(19): 2709-2720.
Jackson, M.B. 2008. Ethylene-promoted
elongation: An adaptation to submergence stress. Annals of Botany 101(2): 229-248.
Kang, J., Yu, H., Tian, C., Zhou, W., Li, C.,
Jiao, Y. & Liu, D. 2014. Suppression of photosynthetic gene expression in
roots is required for sustained root growth under phosphate deficiency. Plant
Physiology 165(3):
1156-1170.
Karthikeyan, A.S. 2002. Regulated expression
of arabidopsis phosphate transporters. Plant Physiology 130(1): 221-233.
Kim, H.J., Lynch, J.P. & Brown, K.M.
2008. Ethylene insensitivity impedes a subset of responses to phosphorus
deficiency in tomato and petunia. Plant, Cell and Environment 31(12): 1744-1755.
Li, Y.S., Mao, X.T., Tian, Q., Li, L.H. &
Zhang, W.H. 2009. Phosphorus deficiency-induced reduction in root hydraulic
conductivity in Medicago falcata is associated with ethylene production. Environ. Exp. Bot. 67(1):
172-177.
Liu, F., Wang, Z., Ren, H., Shen, C., Li, Y.,
Ling, H.Q., Wu, C., Lian, X. & Wu, P. 2010. OsSPX1 suppresses the function
of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in
shoots of rice. The Plant Journal: For Cell and Molecular Biology 62(3): 508-517.
Liu, T.Y., Huang, T.K., Yang, S.Y., Hong,
Y.T., Huang, S.M., Wang, F.N., Chiang, S.F., Tsai, S.Y., Lu, W.C. & Chiou,
T.J. 2016. Identification of plant vacuolar transporters mediating phosphate
storage. Nature Communications 7: 11095.
Lobell, D.B. & Gourdji, S.M. 2012. The
influence of climate change on global crop productivity. Plant Physiology 160(4): 1686-1697.
López-Arredondo, D.L., Leyva-González, M.A.,
González-Morales, S.I., López-Bucio, J. & Herrera-Estrella, L. 2014. Phosphate
nutrition: Improving low-phosphate tolerance in crops. Annual Review of
Plant Biology 65: 95-123.
Ma, Z., Baskin, T.I., Brown, K.M. &
Lynch, J.P. 2003. Regulation of root elongation under phosphorus stress
involves changes in ethylene responsiveness. Plant Physiology 131(3): 1381-1390.
Martín, A.C., Pozo, J.C.D., Iglesias, J.,
Rubio, V., Solano, R., Peña, A.D.L., Leyva, A. & Paz‐Ares, J. 2008.
Influence of cytokinins on the expression of phosphate starvation responsive
genes in Arabidopsis. The Plant Journal 24(5): 559-567.
Młodzińska, E. & Zboińska,
M. 2016. Phosphate uptake and allocation - A closer look at Arabidopsis
thaliana L. and Oryza sativa L. Frontiers in Plant Science 7: 1198.
Mohd-Radzman, N.A., Djordjevic, M.A. &
Imin, N. 2013. Nitrogen modulation of legume root architecture signaling
pathways involves phytohormones and small regulatory molecules. Frontiers in
Plant Science 4: 385.
Muthayya, S., Sugimoto, J.D., Montgomery, S.
& Maberly, G.F. 2014. An overview of global rice production, supply, trade,
and consumption. Annals of the New York Academy of Sciences 1324: 7-14.
Nadira, U.A., Ahmed, I.M., Wu, F. &
Zhang, G. 2016. The regulation of root growth in response to phosphorus
deficiency mediated by phytohormones in a Tibetan wild barley accession. Acta
Physiologiae Plantarum 38(4):
105.
Patrick, B., Antonin, L., Servane, L.L.,
Deleu, C. & Deunff, E.L. 2009. Ethylene modifies architecture of root
system in response to stomatal opening and water allocation changes between
root and shoot. Plant Signaling and Behavior 4(1): 44-46.
Péret, B., Desnos, T., Jost, R., Kanno, S.,
Berkowitz, O. & Nussaume, L. 2014. Root architecture responses: In search
of phosphate. Plant Physiology 166(4):
1713-1723.
Perilli, S. & Sabatini, S. 2010. Methods
in Molecular Biology: Analysis of Root Meristem Size Development. New
Jersey: Humana Press.
Plaxton, W.C. & Tran, H.T. 2011.
Metabolic adaptations of phosphate-starved plants. Plant Physiology 156(3): 1006-1015.
Poirier, Y. & Bucher, M. 2004. Phosphate
transport and homeostasis in arabidopsis. The Arabidopsis Book 1: e0024.
Rafii, M., Zakiah, M.Z., Asfaliza, R., Iffah
Haifaa, M.D., Latif, M.A. & Malek, M.A. 2014. Grain quality performance and
heritability estimation in selected F-1 rice genotypes. Sains Malaysiana 43(1): 1-7.
Raghothama, K.G. 2000. Phosphate transport
and signaling. Current Opinion in Plant Biology 3(3): 182-187.
Secco, D., Wang, C., Arpat, B.A., Wang, Z.,
Poirier, Y., Tyerman, S.D., Wu, P., Shou, H. & Whelan, J. 2012. The
emerging importance of the SPX domain-containing proteins in phosphate
homeostasis. The New Phytologist 193(4):
842-851.
Shi, J., Hu, H., Zhang, K., Zhang, W., Yu, Y.,
Wu, Z. & Wu, P. 2014. The paralogous SPX3 and SPX5 genes redundantly
modulate Pi homeostasis in rice. Journal of Experimental Botany 65(3): 859-870.
Smith, F.A., Jakobsen, I. & Smith, S.E.
2000. Spatial differences in acquisition of soil phosphate between two
arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New
Phytologist 147(2):
357-366.
Song, L. & Liu, D. 2015. Ethylene and
plant responses to phosphate deficiency. Frontiers in Plant Science 6: 796.
Stepanova, A.N. & Alonso, J.M. 2009.
Ethylene signaling and response: Where different regulatory modules meet. Current
Opinion in Plant Biology 12(5):
548-555.
Svistoonoff, S., Creff, A., Reymond, M.,
Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L. & Desnos, T.
2007. Root tip contact with low-phosphate media reprograms plant root
architecture. Nature Genetics 39(6):
792-796.
Swarup, R., Perry, P., Hagenbeek, D., Van Der
Straeten, D., Beemster, G.T.S., Sandberg, G., Bhalerao, R., Ljung, K. &
Bennett, M.J. 2007. Ethylene upregulates auxin biosynthesis in arabidopsis
seedlings to enhance inhibition of root cell elongation. The Plant Cell 19(7): 2186-2196.
Teng, W., Zhao, Y.Y., Zhao, X.Q., He, X., Ma,
W.Y., Deng, Y., Chen, X.P. & Tong, Y.P. 2017. Genome-wide identification,
characterization, and expression analysis of PHT1 phosphate transporters in
wheat. Frontiers in Plant Science 8:
543.
Voß, U., Bishopp, A., Farcot, E. &
Bennett, M.J. 2014. Modelling hormonal response and development. Trends in
Plant Science 19(5):
311-319.
White, P.J., George, T.S., Gregory, P.J.,
Bengough, A.G., Hallett, P.D. & McKenzie, B.M. 2013. Matching roots to
their environment. Annals of Botany 112(2): 207-222.
Xu, H.X., Weng, X.Y. & Yang, Y. 2007.
Effect of phosphorus deficiency on the photosynthetic characteristics of rice
plants. Russian Journal of Plant Physiology 54(6): 741-748.
Zdarska, M., Cuyacot, A.R., Tarr, P.T.,
Yamoune, A., Szmitkowska, A., Hrdinová, V., Gelová, Z., Meyerowitz, E.M. &
Hejátko, J. 2019. ETR1 integrates response to ethylene and cytokinins into a
single multistep phosphorelay pathway to control root growth. Molecular
Plant 12(10): 1338-1352.
Zeenat, A., Zulfiqar, A., Ramzan, A.,
Heckathorn, S.A. & Shakeel, S.N. 2018. Cytokinin interaction to cope with
phosphorous starvation in rice. International Journal of Agriculture and
Biology 20(11): 2446-2454.
Zhang, F., Sun, Y., Pei, W., Jain, A., Sun,
R., Cao, Y., Wu, X., Jiang, T., Zhang, L., Fan, X., Chen, A., Shen, Q., Xu, G.
& Sun, S. 2015. Involvement of OsPht1;4 in phosphate acquisition and
mobilization facilitates embryo development in rice. The Plant Journal 82(4): 556-569.
Zhang, Z., Liao, H. & Lucas, W.J. 2014.
Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in
plants. Journal of Integrative Plant Biology 56(3): 192-220.
Zhu, X.F., Zhu, C.Q., Zhao, X.S., Zheng, S.J.
& Shen, R.F. 2016. Ethylene is involved in root phosphorus remobilization
in rice (Oryza sativa) by regulating cell-wall pectin and enhancing
phosphate translocation to shoots. Annals of Botany 118(4): 645-653.
*Corresponding author; email: snq28@yahoo.com
|