Sains Malaysiana 50(6)(2021): 1621-1638

http://doi.org/10.17576/jsm-2021-5006-10

 

Screening of Rice Varieties Based on Remodeling of Root Architecture Linked to Enhanced Phosphorus Transporters and Ethylene Signaling for Better Phosphorous Acquisition under Limiting Conditions

(Saringan Varieti Padi berdasarkan Pembentukan Semula Arkitektur Akar berkait dengan Pengangkut Fosforus dan Pemberian Isyarat Etilena untuk Pemerolehan Fosforus yang Lebih Baik dalam Keadaan Terhad)

 

ALVEENA ZULFIQAR1, BEENISH JEHAN AZHAR1, AROOSA ZEB1, ASYIA ZEENAT1, SITWAT AMAN1, SCOTT A HECKERTHORN2 & SAMINA N SHAKEEL1,3*

 

1Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan

 

2Department of Environmental Sciences, University of Toledo, Toledo, Ohio 43606, USA

 

3Department of Biological Sciences, Dartmouth College, Hanover, NH, USA

 

Received: 13 November 2019/Accepted: 6 November 2020

 

ABSTRACT

Root architectural modifications in response to altered nutrient level can be used as selection marker for better adapted rice varieties. In this study, we screened six local rice varieties commonly grown in Pakistan, using their unique root architecture and several molecular markers to identify best adapted local variety under phosphorus limiting conditions. Our data showed that rice variety with significant changes in its three-dimensional root architecture system (RSA) and enhanced expression of phosphorus transporters (OsPT2, OsPT4 and OsPT6) is the best variety to handle stress as compared to other varieties. Along with development of screening strategy/method, our data provided evidence that phosphorus starvation leads to upregulation of stress hormone ethylene, which regulates root elongation and root hair development therefore facilitating root architecture modification. We then further checked, how to mitigate or enhance phosphorus starvation responses by application of hormones exogenously, our results showed that ethylene application/treatment enhances phosphorus starvation responses, whereas cytokinin on the other hand reverses deficiency effects which implicates hormonal cross talk is key to modulate P-deficiency responses in rice. This study provides an easy and quick method of analysis of root architecture as physiological marker for rice screening and improve crop yield by selecting best adapted variety for P deficient soils. In future, detail study for understanding phytohormone mediated transcriptomic changes in response to nutrient deficiency and in correlation with physiological response will help to select better adapted varieties that will eventually result in increase of rice yield.

 

Keywords: Cytokinin; ethylene biosynthesis; nutritional stress; phosphate transporters; root architecture

 

ABSTRAK

Pengubahsuaian arkitektur akar sebagai tindak balas terhadap perubahan tahap nutrien dapat digunakan sebagai penanda pilihan bagi varieti padi yang lebih sesuai. Dalam kajian ini, kami meneliti enam varieti padi tempatan yang biasanya ditanam di Pakistan dengan menggunakan arkitektur akarnya yang unik dan beberapa penanda molekul untuk mengenal pasti varieti tempatan yang paling sesuai dalam keadaan yang membatasi fosforus. Data kami menunjukkan bahawa varieti padi dengan perubahan ketara dalam sistem arkitektur akar tiga dimensi (RSA) dan peningkatan ekspresi pengangkut fosforus (OsPT2, OsPT4 dan OsPT6) adalah varieti yang terbaik untuk menangani tekanan berbanding dengan varieti lain. Seiring dengan perkembangan strategi/kaedah penyaringan, data kami memberikan bukti bahawa kebuluran fosforus membawa kepada peningkatan etilena hormon tekanan yang mengatur pemanjangan akar dan pertumbuhan rambut akar sehingga memudahkan pengubahsuaian arkitektur akar. Kami kemudiannya mengkaji lebih lanjut tentang bagaimana mengurangkan atau meningkatkan tindak balas kebuluran fosforus dengan penggunaan hormon eksogen. Keputusan kami menunjukkan bahawa aplikasi/rawatan etilena meningkatkan tindak balas kebuluran fosforus, sedangkan sitokinin sebaliknya membalikkan kesan kekurangan yang menyiratkan perbincangan silang hormonal adalah kunci untuk memodulasi tindak balas kekurangan P dalam padi. Kajian ini memberikan kaedah analisis arkitekturakar yang mudah dan cepat sebagai penanda fisiologi untuk penyaringan padi dan meningkatkan hasil tanaman dengan memilih varieti yang paling sesuai bagi tanah yang kekurangan P. Pada masa depan, kajian terperinci untuk memahami perubahan transkriptom yang dimediasi fitohormon sebagai tindak balas terhadap kekurangan nutrien dan berkorelasi dengan tindak balas fisiologi akan membantu untuk memilih varieti yang lebih baik yang akhirnya akan menghasilkan peningkatan hasil padi.

 

Kata kunci: Arkitektur akar; biosintesis etilena; pengangkut fosforus; sitokinin; tekanan pemakanan

 

REFERENCES

Abbas, M., Irfan, M., Shah, J. & Memon, M. 2018. Intra-specific variations among wheat genotypes for phosphorus use efficiency. Asian Journal of Agriculture and Biology 6(1): 35-45.

Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., Yu, L., Shen, Q., Wu, P., Miller, A.J. & Xu, G. 2009. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal: For Cell and Molecular Biology 57(5): 798-809.

Akhtar, M.S., Oki, Y., Nakashima, Y., Adachi, T. & Nishigaki, M. 2016. Phosphorus stress-induced differential growth, and phosphorus acquisition and use efficiency by spring wheat cultivars. Communications in Soil Science and Plant Analysis 47(sup1): 15-27.

Aziz, N.I.H.A. & Hanafiah, M.M. 2020. Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent. Renewable Energy 145: 847-857.

Aziz, T., Finnegan, P.M., Lambers, H. & Jost, R. 2014. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant, Cell and Environment 37(4): 943-960.

Campos, P., Borie, F., Cornejo, P., López-Ráez, J.A., López-García, Á. & Seguel, A. 2018. Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science 9: 752.

Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C., Pribil, M. & Husted, S. 2018. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177(1): 271-284.

Che Mat, N., Bhuiyan, M., Senan, S., Yaakob, Z. & Wickneswari, R. 2015. Selection of high yielding Jatropha curcas L. accessions for elite hybrid seed production. Sains Malaysiana 44(11): 1567-1572.

Chithrameenal, K., Alagarasan, G., Raveendran, M., Robin, S., Meena, S., Ramanathan, A. & Ramalingam, J. 2018. Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight and blast resistance. PLoS ONE 13(9): 0204144.

Dai, X., Wang, Y., Yang, A. & Zhang, W.H. 2012. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology 159(1): 169-183.

Elser, J.J. 2012. Phosphorus: A limiting nutrient for humanity? Current Opinion in Biotechnology 23(6): 833-838.

Fageria, N.K., Santos, A.B. & Heinemann, A.B. 2011. Lowland rice genotypes evaluation for phosphorus use efficiency in tropical lowland. Journal of Plant Nutrition 34(8): 1087-1095.

Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C., Tabassum, M.A., Chun, M.X., Afzal, M., Jan, A., Jan, M.T. & Huang, J. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environmental Science and Pollution Research International 22(7): 4907-4921.

Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C.A., Topp, C.N., Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S., Harer, J., Benfey, P.N. & Weitz, J.S. 2012. GiA roots: Software for the high throughput analysis of plant root system architecture. BMC Plant Biology 12: 116.

Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Markus Lange, B., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. & Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. aponica). Science 296(5565): 92-100.

Gu, M., Chen, A., Sun, S. & Xu, G. 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: What is missing? Molecular Plant 9(3): 396-416.

Harun, S.N., Hanafiah, M.M. & Abd. Aziz, N.I.H. 2020. An LCA-based environmental performance of rice production for developing a sustainable agri-food system in Malaysia. Environmental Management 67(2): 146-161.

Hassan, M., Hanafiah, M., Taha, Z. & Hadi, I. 2020. Effect of low-intensity laser irradiation on field performance of maize (Zea mays L.) emergence, phenological and seed quality characteristics. Applied Ecology and Environmental Research 18(4): 6009-6023.

Hasan, Md.M., Hasan, Md.M., Teixeira da Silva, J.A. & Li, X. 2016. Regulation of phosphorus uptake and utilization: Transitioning from current knowledge to practical strategies. Cellular and Molecular Biology Letters 21(7): 1-19.

Irfan, M., Shah, J.A. & Abbas, M. 2017. Evaluating the performance of mungbean genotypes for grain yield, phosphorus accumulation and utilization efficiency. Journal of Plant Nutrition 40(19): 2709-2720.

Jackson, M.B. 2008. Ethylene-promoted elongation: An adaptation to submergence stress. Annals of Botany 101(2): 229-248.

Kang, J., Yu, H., Tian, C., Zhou, W., Li, C., Jiao, Y. & Liu, D. 2014. Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiology 165(3): 1156-1170.

Karthikeyan, A.S. 2002. Regulated expression of arabidopsis phosphate transporters. Plant Physiology 130(1): 221-233.

Kim, H.J., Lynch, J.P. & Brown, K.M. 2008. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. Plant, Cell and Environment 31(12): 1744-1755.

Li, Y.S., Mao, X.T., Tian, Q., Li, L.H. & Zhang, W.H. 2009. Phosphorus deficiency-induced reduction in root hydraulic conductivity in Medicago falcata is associated with ethylene production. Environ. Exp. Bot. 67(1): 172-177.

Liu, F., Wang, Z., Ren, H., Shen, C., Li, Y., Ling, H.Q., Wu, C., Lian, X. & Wu, P. 2010. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. The Plant Journal: For Cell and Molecular Biology 62(3): 508-517.

Liu, T.Y., Huang, T.K., Yang, S.Y., Hong, Y.T., Huang, S.M., Wang, F.N., Chiang, S.F., Tsai, S.Y., Lu, W.C. & Chiou, T.J. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications 7: 11095.

Lobell, D.B. & Gourdji, S.M. 2012. The influence of climate change on global crop productivity. Plant Physiology 160(4): 1686-1697.

López-Arredondo, D.L., Leyva-González, M.A., González-Morales, S.I., López-Bucio, J. & Herrera-Estrella, L. 2014. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65: 95-123.

Ma, Z., Baskin, T.I., Brown, K.M. & Lynch, J.P. 2003. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology 131(3): 1381-1390.

Martín, A.C., Pozo, J.C.D., Iglesias, J., Rubio, V., Solano, R., Peña, A.D.L., Leyva, A. & Paz‐Ares, J. 2008. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal 24(5): 559-567.

Młodzińska, E. & Zboińska, M. 2016. Phosphate uptake and allocation - A closer look at Arabidopsis thaliana L. and Oryza sativa L. Frontiers in Plant Science 7: 1198.

Mohd-Radzman, N.A., Djordjevic, M.A. & Imin, N. 2013. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Frontiers in Plant Science 4: 385.

Muthayya, S., Sugimoto, J.D., Montgomery, S. & Maberly, G.F. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324: 7-14.

Nadira, U.A., Ahmed, I.M., Wu, F. & Zhang, G. 2016. The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession. Acta Physiologiae Plantarum 38(4): 105.

Patrick, B., Antonin, L., Servane, L.L., Deleu, C. & Deunff, E.L. 2009. Ethylene modifies architecture of root system in response to stomatal opening and water allocation changes between root and shoot. Plant Signaling and Behavior 4(1): 44-46.

Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O. & Nussaume, L. 2014. Root architecture responses: In search of phosphate. Plant Physiology 166(4): 1713-1723.

Perilli, S. & Sabatini, S. 2010. Methods in Molecular Biology: Analysis of Root Meristem Size Development. New Jersey: Humana Press.

Plaxton, W.C. & Tran, H.T. 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiology 156(3): 1006-1015.

Poirier, Y. & Bucher, M. 2004. Phosphate transport and homeostasis in arabidopsis. The Arabidopsis Book 1: e0024.

Rafii, M., Zakiah, M.Z., Asfaliza, R., Iffah Haifaa, M.D., Latif, M.A. & Malek, M.A. 2014. Grain quality performance and heritability estimation in selected F-1 rice genotypes. Sains Malaysiana 43(1): 1-7.

Raghothama, K.G. 2000. Phosphate transport and signaling. Current Opinion in Plant Biology 3(3): 182-187.

Secco, D., Wang, C., Arpat, B.A., Wang, Z., Poirier, Y., Tyerman, S.D., Wu, P., Shou, H. & Whelan, J. 2012. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. The New Phytologist 193(4): 842-851.

Shi, J., Hu, H., Zhang, K., Zhang, W., Yu, Y., Wu, Z. & Wu, P. 2014. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. Journal of Experimental Botany 65(3): 859-870.

Smith, F.A., Jakobsen, I. & Smith, S.E. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147(2): 357-366.

Song, L. & Liu, D. 2015. Ethylene and plant responses to phosphate deficiency. Frontiers in Plant Science 6: 796.

Stepanova, A.N. & Alonso, J.M. 2009. Ethylene signaling and response: Where different regulatory modules meet. Current Opinion in Plant Biology 12(5): 548-555.

Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L. & Desnos, T. 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39(6): 792-796.

Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T.S., Sandberg, G., Bhalerao, R., Ljung, K. & Bennett, M.J. 2007. Ethylene upregulates auxin biosynthesis in arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell 19(7): 2186-2196.

Teng, W., Zhao, Y.Y., Zhao, X.Q., He, X., Ma, W.Y., Deng, Y., Chen, X.P. & Tong, Y.P. 2017. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Frontiers in Plant Science 8: 543.

Voß, U., Bishopp, A., Farcot, E. & Bennett, M.J. 2014. Modelling hormonal response and development. Trends in Plant Science 19(5): 311-319.

White, P.J., George, T.S., Gregory, P.J., Bengough, A.G., Hallett, P.D. & McKenzie, B.M. 2013. Matching roots to their environment. Annals of Botany 112(2): 207-222.

Xu, H.X., Weng, X.Y. & Yang, Y. 2007. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russian Journal of Plant Physiology 54(6): 741-748.

Zdarska, M., Cuyacot, A.R., Tarr, P.T., Yamoune, A., Szmitkowska, A., Hrdinová, V., Gelová, Z., Meyerowitz, E.M. & Hejátko, J. 2019. ETR1 integrates response to ethylene and cytokinins into a single multistep phosphorelay pathway to control root growth. Molecular Plant 12(10): 1338-1352.

Zeenat, A., Zulfiqar, A., Ramzan, A., Heckathorn, S.A. & Shakeel, S.N. 2018. Cytokinin interaction to cope with phosphorous starvation in rice. International Journal of Agriculture and Biology 20(11): 2446-2454.

Zhang, F., Sun, Y., Pei, W., Jain, A., Sun, R., Cao, Y., Wu, X., Jiang, T., Zhang, L., Fan, X., Chen, A., Shen, Q., Xu, G. & Sun, S. 2015. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. The Plant Journal 82(4): 556-569.

Zhang, Z., Liao, H. & Lucas, W.J. 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology 56(3): 192-220.

Zhu, X.F., Zhu, C.Q., Zhao, X.S., Zheng, S.J. & Shen, R.F. 2016. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa) by regulating cell-wall pectin and enhancing phosphate translocation to shoots. Annals of Botany 118(4): 645-653.

 

*Corresponding author; email: snq28@yahoo.com

 

 

 

previous