Sains
Malaysiana 50(6)(2021):
1673-1683
http://doi.org/10.17576/jsm-2021-5006-14
Kesan Prarawatan dan Masa
Hidrolisis Enzim untuk Penghasilan Oligosakarida daripada Serabut Mesokarpa
Buah Kelapa Sawit
(Effect of Pretreatment and
Enzymatic Hydrolysis for Oligosaccharide Production from Oil Palm Mesocarp
Fibre)
NURUL
HANISAH MOHD1, RIZAFIZAH OTHAMAN1, MUKRAM MOHAMED MACKEEN1,2 & MOHAMAD YUSOF MASKAT2*
1Jabatan Sains Kimia, Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Jabatan Sains Makanan, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
3Institut Biologi Sistem (INBIOSIS),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
21 May 2020/Accepted: 31 October 2020
ABSTRAK
Dalam
kajian ini, serabut mesokarpa buah kelapa sawit (SM) telah ditukar menjadi
oligosakarida sebagai produk nilai tambah. Objektif kajian ini adalah untuk
menentukan kesan prarawatan dan masa hidrolisis untuk penghasilan oligosakarida
dengan menggunakan kompleks enzim komersial Celluclast (1.5 L). Prarawatan
dengan larutan 5% (v/v) natrium hidroksida (NaOH) dan 5% (v/v) larutan asid
asetik (CH3COOH) dilakukan sebelum hidrolisis enzim. Prarawatan
menggunakan kepekatan 5, 10 dan 15% (v/v) larutan NaOH dijalankan dalam
autoklaf pada 120 °C selama 30 min. Hidrolisis SM prarawatan telah dijalankan
pada masa hidrolisis 0, 3, 6 dan 24 jam. Hasil hidrolisis enzim membuktikan
bahawa prarawatan alkali SM dengan 5% NaOH menghasilkan jumlah gula penurun
yang lebih tinggi berbanding dengan SM mentah dan SM prarawatan menggunakan 5%
CH3COOH dengan masing-masing menghasilkan 351.94 mg/g berbanding
181.44 dan 183.15 mg/g jumlah gula penurun per jisim biojisim. Pertambahan
jumlah gula penurun untuk prarawatan alkali disebabkan penyingkiran bahagian
lignin dan hemiselulosa dalam SM. Peningkatan kepekatan NaOH menghasilkan
peratus sakarifikasi yang lebih tinggi. Hidrolisis SM prarawatan selama 3
hingga 24 jam telah menghasilkan oligosakarida dengan bilangan unit glukosa 2,
3 dan 4. Tiada perbezaan unit glukosa diperhatikan apabila masa hidrolisis
ditingkatkan daripada 3 hingga 24 jam. Kajian ini menunjukkan keupayaan
penghasilan oligosakarida daripada SM dengan memanipulasi masa hidrolisis.
Kata
kunci: Masa hidrolisis; oligosakarida; prarawatan alkali; sakarifikasi
lignoselulosa; serabut mesokarpa kelapa sawit
ABSTRACT
In
this study, oil palm mesocarp fibre (SM) was converted into oligosaccharides as
a value-added product. The objective of this study was to determine the effect
of pretreatment and hydrolysis time for oligosaccharide production using a
commercial Celluclast (1.5 L) enzyme complex. Pretreatment with 5% (v/v) sodium
hydroxide (NaOH) and 5% (v/v) acetic acid solution (CH3COOH) was
performed before enzyme hydrolysis. Pretreatment using concentrations of 5, 10
and 15% (v/v) NaOH solution was carried out in an autoclave at 120 °C for 30
min. Hydrolysis of the alkaline pretreated SM was performed at 0, 3, 6, and 24
h. Enzymatic hydrolysis results indicated that pretreatment of SM with 5% NaOH
produced a higher amount of reducing sugar compared to raw SM and 5% CH3COOH
SM pretreatment, producing 351.94 mg/g compared to 181.44 and 183.15 mg/g
amount of reducing sugar per mass of biomass, respectively. The increased
amount of sugars for alkali pretreatment was due to the removal of lignin and
hemicellulose portions in SM. Increased NaOH concentration resulted in a higher
percentage of saccharification. Hydrolysis of pretreated SM for 3 to 24 h
produced oligosaccharides with 2, 3 and 4 glucose units. No differences in the
number of glucose units were observed when hydrolysis time was increased from 3
to 24 h. This study demonstrated the ability of oligosaccharide production from
SM by manipulating hydrolysis time.
Keywords: Alkaline
pretreatment; hydrolysis time; lignocellulosic saccharification; oil palm
mesocarp fibre; oligosaccharides
REFERENCES
Aftab, M.N., Iqbal, I., Riaz, F.,
Karadag, A. & Tabatabaei, M. 2019. Different pretreatment methods of
lignocellulosic biomass for use in biofuel production. Dlm. Biomass for
Bioenergy - Recent Trends and Future Challenges, disunting oleh Abomohra,
A.E.F. London, United Kingdom: IntechOpen. hlm. 1-24.
Al-Muraisy, S.A.A., Ali, N.,
Hassan, O. & Sabeen, A.H. 2017. Alkali pretreatment and acid hydrolysis of
oil palm mesocarp fiber (OPMF) to produce glucose. Advanced Science Letters 23(9): 8832-8836.
Ali, N., Aziz, C. & Hassan, O.
2015. Alkali pretreatment and acid hydrolysis of coconut pulp and empty fruit
bunch to produce glucose. Jurnal Teknologi 74(7): 7-11.
Alrumman, S.A. 2016. Enzymatic
saccharification and fermentation of cellulosic date palm wastes to glucose and
lactic acid. Brazilian Journal of Microbiology 47(1): 110-119.
Davila, I., Gullon, B., Alonso,
J.L., Labidi, J. & Gullon, P. 2019. Vine shoots as new source for the
manufacture of prebiotic oligosaccharides. Carbohydrate Polymers 207:
34-43.
Dong, M., Wang, S., Xu, F., Wang,
J., Yang, N., Li, Q., Chen, J. & Li, W. 2019. Pretreatment of sweet sorghum
straw and its enzymatic digestion: Insight into the structural changes and
visualization of hydrolysis process. Biotechnology for Biofuels 12(1):
1-11.
Gibson, G.R., Hutkins, R., Sanders,
M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C.,
Swanson, K.S., Cani, P.D., Verbeke, K. & Reid, G. 2017. Expert consensus
document: The International Scientific Association for Probiotics and
Prebiotics (ISAPP) consensus statement on the definition and scope of
prebiotics. Nature Reviews Gastroenterology & Hepatology 14(8):
491-502.
Ghose, T. 1987. Measurement of
cellulase activities. Pure and Applied Chemistry 59(2): 257-268.
Hassan, O., Ling, T.P., Maskat,
M.Y., Illias, R.M., Badri, K., Jahim, J. & Mahadi, N.M. 2013. Optimization
of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF)
using enzyme mixtures. Biomass & Bioenergy 56: 137-146.
Hustoft, T.N., Hausken, T., Ystad,
S.O., Valeur, J., Brokstad, K., Hatlebakk, J.G. & Lied, G.A. 2016. Effects
of varying dietary content of fermentable short-chain carbohydrates on
symptoms, fecal microenvironment, and cytokine profiles in patients with
irritable bowel syndrome. Neurogastroenterology & Motility 29(4):
1-9.
Ioelovich, M. & Morag, E. 2012.
Study of enzymatic hydrolysis of mild pretreated lignocellulosic biomasses. BioResources 7(1): 1040-1052.
Iberahim, N.I., Jahim, J.M., Harun,
S., Nor, M.T.M. & Hassan, O. 2013. Sodium hydroxide pretreatment and
enzymatic hydrolysis of oil palm mesocarp fiber. International Journal of
Chemical Engineering and Applications 4(3): 101-105.
Jalaludin, I., Sudin, A.H., Said,
I.M., Azizan, K.A., Baharum, S.N., Murad, A.M.A., Bakar, F.D.A., Mahadi, N.M.,
Wormald, M.R. & Alonzi, D.S. 2017. Fluorescence and evaporative light
scattering HPLC profiling of intracellular asparagine (N)-linked
oligosaccharides from Saccharomyces cerevisiae using the alg8 mutant. Malaysian
Journal of Analytical Sciences 21(6): 1210-1218.
Jahromi, M.F., Liang, J.B.,
Abdullah, N., Goh, Y.M., Ebrahimi, R. & Shokryazdan, P. 2016. Extraction and
characterization of oligosaccharides from palm kernel cake as prebiotic. BioResources 11(1): 674-695.
Kalidas, N.R., Saminathan, M.,
Ismail, I.S., Abas, F., Maity, P., Islam, S.S., Manshoor, N. & Shaari, K.
2017. Structural characterization and evaluation of prebiotic activity of oil
palm kernel cake mannanoligosaccharides. Food Chemistry 234: 348-355.
Karnaouri, A., Matsakas, L.,
Bühler, S., Muraleedharan, M.N., Christakopoulos, P. & Rova, U. 2019.
Tailoring Celluclast® cocktail’s performance towards the production
of prebiotic cello-oligosaccharides from waste forest biomass. Catalysts 9(11): 897-913.
Kumar, A.K. & Sharma, S. 2017.
Recent updates on different methods of pretreatment of lignocellulosic
feedstocks: A review. Bioresources and Bioprocessing 4(1): 7-26.
Liang, S., Liao, W., Ma, X., Li, X.
& Wang, Y. 2017. H2O2 oxidative preparation,
characterization and antiradical activity of a novel oligosaccharide derived
from flaxseed gum. Food Chemistry 230: 135-144.
Mandels, M. & Sternberg, D.
1976. Recent advances in cellulase technology. Journal of Fermentation
Technology 54(4): 267-286.
Modenbach, A.A. & Nokes, S. E.
2012. The use of high-solids loadings in biomass pretreatment - A review. Biotechnology
and Bioengineering 109(6): 1430-1442.
Modenbach, A.A. & Nokes, S.E.
2014. Effects of sodium hydroxide pretreatment on structural components of
biomass. Transactions of the ASABE 57(4): 1187-1198.
Moller, M.S., Goh, Y.J., Viborg,
A.H., Andersen, J.M., Klaenhammer, T.R., Svensson, B. & Hachem, M.A. 2014.
Recent insight in α-glucan metabolism in probiotic bacteria. Biologia 69(6): 713-721.
Nurhayati, Hartutik, Sjofjan, O.
& Widodo, E. 2018. Production of mannan oligosaccharides (MOS) extracted
from fermented palm kernel cake and cassava by-product mixture and its efficacy
as prebiotic. Livestock Research for Rural Development 30(10): 1-8.
Pasma, S.A., Daik, R. & Maskat,
M.Y. 2018. Enzymatic synthesis of biodegradable polyesters using succinic acid
monomer derived from cellulose of oil palm empty fruit bunch. Journal of
Wood Chemistry and Technology 38(6): 445-459.
Pasma, S.A., Daik, R., Maskat, M.Y.
& Hassan, O. 2013. Application of Box-Behnken design in optimization of
glucose production from oil palm empty fruit bunch cellulose. International
Journal of Polymer Science 2013: 1-8.
Pasma, S.A., Daik, R., Ramli, S.,
Maskat, M.Y. & Zulfakar, M.H. 2019. Enzymatic degradation of lignin
extracted from oil palm empty fruit bunch using laccase and cutinase. BioResources 14(4): 8879-8891.
Peerakietkhajorn, S., Jeanmard, N.,
Chuenpanitkit, P., K-Da, S., Bannob, K. & Khuituan, P. 2020. Effects of
plant oligosaccharides derived from dragon fruit on gut microbiota in proximal
and distal colon of mice. Sains Malaysiana 49(3): 603-611.
Quiroz-Castañeda, R.E. & Folch-Mallol,
J.L. 2013. Hydrolysis of biomass mediated by cellulases for the production of
sugars. Dlm. Sustainable Degradation of Lignocellulosic Biomass Techniques,
Applications and Commercialization, edited by Chandel, A. & Da Silva,
S.S. London, United Kingdom: IntechOpen. pp. 119-155.
Ren, Z., Wang, C., Zuo, Q.,
Yousfani, S.H.S., Anuar, N.S., Zakaria, S. & Liu, X. 2019. Effect of alkali
treatment on interfacial and mechanical properties of kenaf fibre reinforced
epoxy unidirectional composites. Sains Malaysiana 49(3): 173-181.
Saha, S., Kurade, M.B.,
El-Dalatony, M.M., Chatterjee, P.K., Lee, D.S. & Jeon, B.H. 2016. Improving
bioavailability of fruit wastes using organic acid: An exploratory study of
biomass pretreatment for fermentation. Energy Conversion and Management 127: 256-264.
Salleh, N.S., Bakar, F.D.A. &
Murad, A.M.A. 2018. Effect of Humicola insolens recombinant
endoglucanase on the performance of commercial cellulase in oil palm biomass
hydrolysis. Malaysian Journal of Microbiology 14(6): 547-553.
Samanta, A.K., Jayapal, N., Kolte,
A.P., Senani, S., Sridhar, M., Dhali, A., Suresh, K.P., Jayaram, C. &
Prasad, C.S. 2015. Process for enzymatic production of xylooligosaccharides
from the xylan of corn cobs. Journal of Food Processing and Preservation 39(6): 729-736.
Wahlström, R., Rovio, S. &
Suurnäkki, A. 2012. Partial enzymatic hydrolysis of microcrystalline cellulose
in ionic liquids by Trichoderma reesei endoglucanases. RSC Advances 2(10): 4472-4480.
Warid, W.N.M., Ariffin, H., Hassan,
M.A. & Shirai, Y. 2016. Optimization of superheated steam treatment to
improve surface modification of oil palm biomass fiber. BioResources 11(3): 5780-5796.
Wicaksono, A., Rahmawan, A., Matin,
H.H.A., Wardani, L.G.K., Kusworo, T.D. & Sumardiono, S. 2017. The effect of
pretreatment using sodium hydroxide and acetic acid to biogas production from
rice straw waste. MATEC Web of Conferences 101, 02011. United Kingdom:
EDP Sciences. hlm. 1-6.
Wilson, B. & Whelan, K. 2017.
Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition,
specificity, function and application in gastrointestinal disorders. Journal
of Gastroenterology and Hepatology 32(S1): 64-68.
Woon, J.S.K., Mackeen, M.M., Bin
Sudin, A.H., Mahadi, N.M., Illias, R.M., Murad, A.M.A. & Bakar, F.D.A.
2016. Production of an oligosaccharide-specific cellobiohydrolase from the
thermophilic fungus Thielavia terrestris. Biotechnology Letters 38(5): 825-832.
Wu, H., Dai, X., Zhou, S.L., Gan,
Y.Y., Xiong, Z.Y., Qin, Y.H., Ma, J., Yang, L., Wu, Z.K., Wang, T.L. &
Wang, W.G. 2017. Ultrasound-assisted alkaline pretreatment for enhancing the
enzymatic hydrolysis of rice straw by using the heat energy dissipated from
ultrasonication. Bioresource Technology 241: 70-74.
Zakaria, M.R., Hirata, S. &
Hassan, M.A. 2014. Combined pretreatment using alkaline hydrothermal and ball
milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresource
Technology 169: 236-243.
Zhang, S., Hu, H., Wang, L., Liu,
F. & Pan, S. 2018. Preparation and prebiotic potential of pectin
oligosaccharides obtained from citrus peel pectin. Food Chemistry 244:
232-237.
*Corresponding
author; email: yusofm@ukm.edu.my
|