Sains Malaysiana 50(6)(2021): 1673-1683

http://doi.org/10.17576/jsm-2021-5006-14

 

Kesan Prarawatan dan Masa Hidrolisis Enzim untuk Penghasilan Oligosakarida daripada Serabut Mesokarpa Buah Kelapa Sawit

(Effect of Pretreatment and Enzymatic Hydrolysis for Oligosaccharide Production from Oil Palm Mesocarp Fibre)

 

NURUL HANISAH MOHD1, RIZAFIZAH OTHAMAN1, MUKRAM MOHAMED MACKEEN1,2 & MOHAMAD YUSOF MASKAT2*

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Institut Biologi Sistem (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 21 May 2020/Accepted: 31 October 2020

 

ABSTRAK

Dalam kajian ini, serabut mesokarpa buah kelapa sawit (SM) telah ditukar menjadi oligosakarida sebagai produk nilai tambah. Objektif kajian ini adalah untuk menentukan kesan prarawatan dan masa hidrolisis untuk penghasilan oligosakarida dengan menggunakan kompleks enzim komersial Celluclast (1.5 L). Prarawatan dengan larutan 5% (v/v) natrium hidroksida (NaOH) dan 5% (v/v) larutan asid asetik (CH3COOH) dilakukan sebelum hidrolisis enzim. Prarawatan menggunakan kepekatan 5, 10 dan 15% (v/v) larutan NaOH dijalankan dalam autoklaf pada 120 °C selama 30 min. Hidrolisis SM prarawatan telah dijalankan pada masa hidrolisis 0, 3, 6 dan 24 jam. Hasil hidrolisis enzim membuktikan bahawa prarawatan alkali SM dengan 5% NaOH menghasilkan jumlah gula penurun yang lebih tinggi berbanding dengan SM mentah dan SM prarawatan menggunakan 5% CH3COOH dengan masing-masing menghasilkan 351.94 mg/g berbanding 181.44 dan 183.15 mg/g jumlah gula penurun per jisim biojisim. Pertambahan jumlah gula penurun untuk prarawatan alkali disebabkan penyingkiran bahagian lignin dan hemiselulosa dalam SM. Peningkatan kepekatan NaOH menghasilkan peratus sakarifikasi yang lebih tinggi. Hidrolisis SM prarawatan selama 3 hingga 24 jam telah menghasilkan oligosakarida dengan bilangan unit glukosa 2, 3 dan 4. Tiada perbezaan unit glukosa diperhatikan apabila masa hidrolisis ditingkatkan daripada 3 hingga 24 jam. Kajian ini menunjukkan keupayaan penghasilan oligosakarida daripada SM dengan memanipulasi masa hidrolisis.

 

Kata kunci: Masa hidrolisis; oligosakarida; prarawatan alkali; sakarifikasi lignoselulosa; serabut mesokarpa kelapa sawit

 

ABSTRACT

In this study, oil palm mesocarp fibre (SM) was converted into oligosaccharides as a value-added product. The objective of this study was to determine the effect of pretreatment and hydrolysis time for oligosaccharide production using a commercial Celluclast (1.5 L) enzyme complex. Pretreatment with 5% (v/v) sodium hydroxide (NaOH) and 5% (v/v) acetic acid solution (CH3COOH) was performed before enzyme hydrolysis. Pretreatment using concentrations of 5, 10 and 15% (v/v) NaOH solution was carried out in an autoclave at 120 °C for 30 min. Hydrolysis of the alkaline pretreated SM was performed at 0, 3, 6, and 24 h. Enzymatic hydrolysis results indicated that pretreatment of SM with 5% NaOH produced a higher amount of reducing sugar compared to raw SM and 5% CH3COOH SM pretreatment, producing 351.94 mg/g compared to 181.44 and 183.15 mg/g amount of reducing sugar per mass of biomass, respectively. The increased amount of sugars for alkali pretreatment was due to the removal of lignin and hemicellulose portions in SM. Increased NaOH concentration resulted in a higher percentage of saccharification. Hydrolysis of pretreated SM for 3 to 24 h produced oligosaccharides with 2, 3 and 4 glucose units. No differences in the number of glucose units were observed when hydrolysis time was increased from 3 to 24 h. This study demonstrated the ability of oligosaccharide production from SM by manipulating hydrolysis time.

 

Keywords: Alkaline pretreatment; hydrolysis time; lignocellulosic saccharification; oil palm mesocarp fibre; oligosaccharides

 

REFERENCES

 

Aftab, M.N., Iqbal, I., Riaz, F., Karadag, A. & Tabatabaei, M. 2019. Different pretreatment methods of lignocellulosic biomass for use in biofuel production. Dlm. Biomass for Bioenergy - Recent Trends and Future Challenges, disunting oleh Abomohra, A.E.F. London, United Kingdom: IntechOpen. hlm. 1-24.

Al-Muraisy, S.A.A., Ali, N., Hassan, O. & Sabeen, A.H. 2017. Alkali pretreatment and acid hydrolysis of oil palm mesocarp fiber (OPMF) to produce glucose. Advanced Science Letters 23(9): 8832-8836.

Ali, N., Aziz, C. & Hassan, O. 2015. Alkali pretreatment and acid hydrolysis of coconut pulp and empty fruit bunch to produce glucose. Jurnal Teknologi 74(7): 7-11.

Alrumman, S.A. 2016. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian Journal of Microbiology 47(1): 110-119.

Davila, I., Gullon, B., Alonso, J.L., Labidi, J. & Gullon, P. 2019. Vine shoots as new source for the manufacture of prebiotic oligosaccharides. Carbohydrate Polymers 207: 34-43.

Dong, M., Wang, S., Xu, F., Wang, J., Yang, N., Li, Q., Chen, J. & Li, W. 2019. Pretreatment of sweet sorghum straw and its enzymatic digestion: Insight into the structural changes and visualization of hydrolysis process. Biotechnology for Biofuels 12(1): 1-11.

Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. & Reid, G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14(8): 491-502.

Ghose, T. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268.

Hassan, O., Ling, T.P., Maskat, M.Y., Illias, R.M., Badri, K., Jahim, J. & Mahadi, N.M. 2013. Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass & Bioenergy 56: 137-146.

Hustoft, T.N., Hausken, T., Ystad, S.O., Valeur, J., Brokstad, K., Hatlebakk, J.G. & Lied, G.A. 2016. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterology & Motility 29(4): 1-9.

Ioelovich, M. & Morag, E. 2012. Study of enzymatic hydrolysis of mild pretreated lignocellulosic biomasses. BioResources 7(1): 1040-1052.

Iberahim, N.I., Jahim, J.M., Harun, S., Nor, M.T.M. & Hassan, O. 2013. Sodium hydroxide pretreatment and enzymatic hydrolysis of oil palm mesocarp fiber. International Journal of Chemical Engineering and Applications 4(3): 101-105.

Jalaludin, I., Sudin, A.H., Said, I.M., Azizan, K.A., Baharum, S.N., Murad, A.M.A., Bakar, F.D.A., Mahadi, N.M., Wormald, M.R. & Alonzi, D.S. 2017. Fluorescence and evaporative light scattering HPLC profiling of intracellular asparagine (N)-linked oligosaccharides from Saccharomyces cerevisiae using the alg8 mutant. Malaysian Journal of Analytical Sciences 21(6): 1210-1218.

Jahromi, M.F., Liang, J.B., Abdullah, N., Goh, Y.M., Ebrahimi, R. & Shokryazdan, P. 2016. Extraction and characterization of oligosaccharides from palm kernel cake as prebiotic. BioResources 11(1): 674-695.

Kalidas, N.R., Saminathan, M., Ismail, I.S., Abas, F., Maity, P., Islam, S.S., Manshoor, N. & Shaari, K. 2017. Structural characterization and evaluation of prebiotic activity of oil palm kernel cake mannanoligosaccharides. Food Chemistry 234: 348-355.

Karnaouri, A., Matsakas, L., Bühler, S., Muraleedharan, M.N., Christakopoulos, P. & Rova, U. 2019. Tailoring Celluclast® cocktail’s performance towards the production of prebiotic cello-oligosaccharides from waste forest biomass. Catalysts 9(11): 897-913.

Kumar, A.K. & Sharma, S. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing 4(1): 7-26.

Liang, S., Liao, W., Ma, X., Li, X. & Wang, Y. 2017. H2O2 oxidative preparation, characterization and antiradical activity of a novel oligosaccharide derived from flaxseed gum. Food Chemistry 230: 135-144.

Mandels, M. & Sternberg, D. 1976. Recent advances in cellulase technology. Journal of Fermentation Technology 54(4): 267-286.

Modenbach, A.A. & Nokes, S. E. 2012. The use of high-solids loadings in biomass pretreatment - A review. Biotechnology and Bioengineering 109(6): 1430-1442.

Modenbach, A.A. & Nokes, S.E. 2014. Effects of sodium hydroxide pretreatment on structural components of biomass. Transactions of the ASABE 57(4): 1187-1198.

Moller, M.S., Goh, Y.J., Viborg, A.H., Andersen, J.M., Klaenhammer, T.R., Svensson, B. & Hachem, M.A. 2014. Recent insight in α-glucan metabolism in probiotic bacteria. Biologia 69(6): 713-721.

Nurhayati, Hartutik, Sjofjan, O. & Widodo, E. 2018. Production of mannan oligosaccharides (MOS) extracted from fermented palm kernel cake and cassava by-product mixture and its efficacy as prebiotic. Livestock Research for Rural Development 30(10): 1-8.

Pasma, S.A., Daik, R. & Maskat, M.Y. 2018. Enzymatic synthesis of biodegradable polyesters using succinic acid monomer derived from cellulose of oil palm empty fruit bunch. Journal of Wood Chemistry and Technology 38(6): 445-459.

Pasma, S.A., Daik, R., Maskat, M.Y. & Hassan, O. 2013. Application of Box-Behnken design in optimization of glucose production from oil palm empty fruit bunch cellulose. International Journal of Polymer Science 2013: 1-8.

Pasma, S.A., Daik, R., Ramli, S., Maskat, M.Y. & Zulfakar, M.H. 2019. Enzymatic degradation of lignin extracted from oil palm empty fruit bunch using laccase and cutinase. BioResources 14(4): 8879-8891.

Peerakietkhajorn, S., Jeanmard, N., Chuenpanitkit, P., K-Da, S., Bannob, K. & Khuituan, P. 2020. Effects of plant oligosaccharides derived from dragon fruit on gut microbiota in proximal and distal colon of mice. Sains Malaysiana 49(3): 603-611.

Quiroz-Castañeda, R.E. & Folch-Mallol, J.L. 2013. Hydrolysis of biomass mediated by cellulases for the production of sugars. Dlm. Sustainable Degradation of Lignocellulosic Biomass Techniques, Applications and Commercialization, edited by Chandel, A. & Da Silva, S.S. London, United Kingdom: IntechOpen. pp. 119-155.

Ren, Z., Wang, C., Zuo, Q., Yousfani, S.H.S., Anuar, N.S., Zakaria, S. & Liu, X. 2019. Effect of alkali treatment on interfacial and mechanical properties of kenaf fibre reinforced epoxy unidirectional composites. Sains Malaysiana 49(3): 173-181.

Saha, S., Kurade, M.B., El-Dalatony, M.M., Chatterjee, P.K., Lee, D.S. & Jeon, B.H. 2016. Improving bioavailability of fruit wastes using organic acid: An exploratory study of biomass pretreatment for fermentation. Energy Conversion and Management 127: 256-264.

Salleh, N.S., Bakar, F.D.A. & Murad, A.M.A. 2018. Effect of Humicola insolens recombinant endoglucanase on the performance of commercial cellulase in oil palm biomass hydrolysis. Malaysian Journal of Microbiology 14(6): 547-553.

Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Dhali, A., Suresh, K.P., Jayaram, C. & Prasad, C.S. 2015. Process for enzymatic production of xylooligosaccharides from the xylan of corn cobs. Journal of Food Processing and Preservation 39(6): 729-736.

Wahlström, R., Rovio, S. & Suurnäkki, A. 2012. Partial enzymatic hydrolysis of microcrystalline cellulose in ionic liquids by Trichoderma reesei endoglucanases. RSC Advances 2(10): 4472-4480.

Warid, W.N.M., Ariffin, H., Hassan, M.A. & Shirai, Y. 2016. Optimization of superheated steam treatment to improve surface modification of oil palm biomass fiber. BioResources 11(3): 5780-5796.

Wicaksono, A., Rahmawan, A., Matin, H.H.A., Wardani, L.G.K., Kusworo, T.D. & Sumardiono, S. 2017. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste. MATEC Web of Conferences 101, 02011. United Kingdom: EDP Sciences. hlm. 1-6.

Wilson, B. & Whelan, K. 2017. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology 32(S1): 64-68.

Woon, J.S.K., Mackeen, M.M., Bin Sudin, A.H., Mahadi, N.M., Illias, R.M., Murad, A.M.A. & Bakar, F.D.A. 2016. Production of an oligosaccharide-specific cellobiohydrolase from the thermophilic fungus Thielavia terrestris. Biotechnology Letters 38(5): 825-832.

Wu, H., Dai, X., Zhou, S.L., Gan, Y.Y., Xiong, Z.Y., Qin, Y.H., Ma, J., Yang, L., Wu, Z.K., Wang, T.L. & Wang, W.G. 2017. Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology 241: 70-74.

Zakaria, M.R., Hirata, S. & Hassan, M.A. 2014. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber. Bioresource Technology 169: 236-243.

Zhang, S., Hu, H., Wang, L., Liu, F. & Pan, S. 2018. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chemistry 244: 232-237.

 

*Corresponding author; email: yusofm@ukm.edu.my

 

 

 

previous