Sains Malaysiana 50(6)(2021): 1715-1726

http://doi.org/10.17576/jsm-2021-5006-18

 

Immunomodulatory Properties of Wharton’s Jelly-Derived Mesenchymal Stem Cells from Three Anatomical Segments of Umbilical Cord

(Sifat Imunomodulasi Sel Stem Mesenkima Jeli Wharton yang Dipencilkan daripada Tiga Segmen Anatomi Tali Pusat)

 

JEZAMINE LIM1, SUE PING ENG1, WEI YEN YEOH1, YIK WAN LOW1, NUR MOHD SHAFWAN BIN JUSOH1, AIN SYAHIRAH BINTI RAHMAT1, AMIRAH SHAHRANI1, FAIQ BAHRANI YAHYA1, RUSHDA ADIBA ABDUL RAHMAN1, ZAINUL RASHID MOHAMAD RAZI2, CHOOI FUN LEONG3, SHINSMON JOSE1 & MIN HWEI NG1*

 

1Centre for Tissue Engineering & Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Haematology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 25 February 2020/Accepted: 9 October 2020

 

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are reported to be immune-privileged and immune-evasive. MSCs are capable of differentiating into specific cell types for subsequent use in cell-based therapy. They express low levels of human leucocyte antigen (HLA)-ABC and no HLA-DR. Wharton’s jelly-derived MSCs (WJ-MSCs) were also found to express human leukocyte antigen G (HLA-G), which renders them immunosuppressive. This study aimed to determine whether cultured WJ-MSCs retain their immune-privileged and immune-evasive properties after cell differentiation, and whether these properties differ among MSCs derived from different anatomical segments of the umbilical cord. Umbilical cords of healthy pregnant mothers undergoing caesarean section were obtained and grouped by three anatomical segments: fetal, middle, and maternal segments. WJ-MSCs were isolated, culture-expanded, and differentiated into osteogenic cells. Expression of HLA-DR, HLA-ABC, and HLA-G were quantified using flow cytometry. Both undifferentiated and osteodifferentiated WJ-MSCs were subsequently co-cultured with allogeneic peripheral blood mononuclear cells with/without lipopolysaccharide (LPS) stimulation for five days. Lymphocyte proliferation assay was performed using carboxyfluorescein succinimidyl ester (CFSE) as a tracker. Our results showed no significant difference existed in the HLA profiles among WJ-MSCs from different segments and between WJ-MSCs with and without osteogenic differentiation. Mean levels for HLA-G, HLABC, and HLA-DR were 24.82±17.64, 52.50±18.41, and 1.00±1.68%, respectively. Stimulation with LPS and WJ-MSCs increased peripheral blooc mononuclear cells (PBMC) proliferation. However, PBMC proliferation was significantly lower when PBMCs were co-cultured with osteodifferentiated WJ-MSCs (p < .05; with LPS stimulation and p < .001 without LPS stimulation) than when they were co-cultured with undifferentiated WJ-MSCs. These findings suggest that cultured WJ-MSCs stimulate lymphocyte proliferation and are not immune-privileged. Osteodifferentiated WJ-MSCs reduced the immunogenicity of WJ-MSCs, and this reduction in PBMC proliferation was even more pronounced in the presence of LPS (p < .05). In conclusion, cultured WJ-MSCs are not immune-privileged. Osteodifferentiated WJ-MSCs are less immunogenic than undifferentiated WJ-MSCs, in which case hypoimmunogenicity is more profound under LPS-stimulated conditions.

 

Keywords: Immunomodulation; peripheral blood mononuclear cells; umbilical cord; Wharton’s jelly mesenchymal stem cell

 

ABSTRAK

Sel Stem Mesenkima (MSCs) adalah sel progenitor multipoten yang boleh membeza menjadi sel yang khusus dan ini berpotensi digunakan untuk membaikpulih tisu yang rosak. MSC juga mempunyai sifat menindas atau mengelak gerak balas imun kerana ia mengungkap antigen leukosit manusia kelas I iaitu HLA-ABC yang rendah malah tidak mengungkap antigen leukosit manusia kelas II iaitu HLA-DR. Satu keistimewaan sel stem mesenkima yang dipencil daripada bahagian jeli Wharton tali pusat (WJ-MSCs) ialah ia juga menggunakan HLA-G, sejenis antigen leukosit kelas I dan ini menyebabkan WJ-MSC mempunyai daya menindas gerak balas imun yang lebih tinggi. Dalam kajian ini, matlamat kami adalah untuk menentukan sama ada WJ-MSC yang dipencilkan daripada segmen tali pusat yang berlainan dapat mengekal keistimewaan keimunan asalnya. Tali pusat daripada ibu yang sihat dan menjalani pembedahan caesarean telah diperoleh dan dibahagikan kepada tiga segmen anatomi, iaitu segmen bahagian fetus, tengah dan ibu. Selepas itu, WJ-MSCs dipencilkan, dikultur dan dibezakan kepada sel osteogenik. Ekspresi HLA-DR, HLA-ABC dan HLA-G diukur melalui sitometri aliran. WJ-MSCs yang dibezakan kepada sel osteogenik atau MSC asli dibiakkan bersama dengan sel mononuklear darah alogenik dengan atau tanpa rangsangan lipopolisakarida (LPS) selama 5 hari. Ujian proliferasi sel limfosit dijalankan menggunakan ester karboksifluoresein sinksinmidil (CFSE) sebagai penanda jejak. Hasil daripada kajian ini menunjukkan bahawa tiada perbezaan yang signifikan dalam profil HLA antara WJ-MSCs daripada segmen yang berbeza dan juga antara WJ-MSC asli dan WJMSC pembezaan osteogenik. Purata ungkapan HLA-G, HL-ABC dan HLA-DR masing-masing adalah 24.82.0±17.64, 52.50±18.41, 1.00±1.68%. Penambahan LPS merangsang proliferasi sel limfosit. Tetapi, apabila sel limfosit dikultur bersama dengan WJ-MSC daripada segmen yang berbeza, proliferasi sel limfosit menurun (p < .05; dengan rangsangan LPS) dan (p < .001 tanpa rangsangan LPS). Penemuan ini mencadangkan bahawa WJ-MSC sebenarnya tidak dapat mengelak gerak balas imun. WJ-MSC pembezaan osteogenik dapat mengurangkan keimunogenan WJ-MSC dan penurunan proliferasi sel limfosit adalah lebih ketara apabila sel limfosit dirangsang oleh LPS (p < .05). Secara kesimpulan, WJ-MSC tidak dapat mengelak gerak balas imun. WJ-MSC pembezaan osteogenik kurang keimunogenan daripada WJ-MSC asli, lebih-lebih lagi jika dirangsang oleh LPS.

 

Kata kunci: Keimunogenan; sel limfosit; sel stem mesenkima jeli Wharton; tali pusat

 

REFERENCES

Ab Kadir, R., Zainal Ariffin, S.H., Abdul Wahab, R.M., Kermani, S. & Senafi, S. 2012. Characterization of mononucleated human peripheral blood cells. The Scientific World Journal 2012: 843843.

Abumaree, M.H., Al Jumah, M.A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F.M.,  Fatani, A.S., ChamLey, L.W. & Knawy, B.A. 2013. Human placental mesenchymal stem cells (PMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports 9(5): 620-641.

Allickson, J.G., Sanchez, A., Yefimenko, N., Borlongan, C.V. & Sanberg, P.R. 2011. Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. The Open Stem Cell Journal 3: 4-10.

Andrews, P.W., Ben-David, U., Benvenisty, N., Coffey, P., Eggan, K., Knowles, B.B., Nagy, A., Pera, M., Reubinoff, B., Rugg-Gunn, P.J. & Glyn, N.S. 2017. Assessing the safety of human pluripotent stem cells and their derivatives for clinical applications. Stem Cell Reports 9(1): 1-4.

Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A. & Hoffman, R. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology 30(1): 42-48.

Bernardo, M.E. & Fibbe, W.E. 2013. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 13(4): 392-402.

Chen, G., Yue, A., Ruan, Z., Yin, Y., Wang, R., Ren, Y. & Zhu, L. 2014. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS ONE 9(6): e98565.

Cho, D., Kim, M.R., Jeong, H., Jeong, H.C., Jeong, M.H., Yoon, S.H., Kim, Y.S. & Ahn, Y. 2014. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone  marrow-derived macrophages. Experimental and Molecular Medicine 46(1): e70.

Deng, Y., Zhang, Y., Ye, L., Zhang, T., Cheng, J., Chen, G., Zhang, Q. & Yang, Y. 2016. Umbilical cord-derived mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype by secreting IL6 and HGF. Scientific Reports 6: 37566.

Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S. & Gianni, A.M. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10): 3838-3843.

Ding, D.C., Chou, H.L., Chang, Y.H., Hung, W.T., Liu, H.W. & Chu, T.Y. 2016. Characterization of HLA-G and related immunosuppressive effects in human umbilical cord stroma-derived stem cells. Cell Transplantation 25(2): 217-228.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society For Cellular Therapy position statement. Cytotherapy 8(4): 315-317.

Ema, H., Morita, Y. & Nakauchi, H. 2004. Handbook of Stem Cells Vol. 2: Phenotype of Mouse Hematopoietic Stem Cells. New York: Elsevier Academic Press.

Glenn, J.D. & Whartenby, K.A. 2014. Mesen  chymal stem cells: Emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells 6(5): 526-539.

Guerrouahen, B.S., Sidahmed, H., Al Sulaiti, A., Al Khulaifi, M. & Cugno, C. 2019. Enhancing mesenchymal stromal cell immunomodulation for treating conditions influenced by the immune system. Stem Cells International 2019: 7219297.

Hou, T.Y., Xu, J.Z., Wu, X.H., Xie, Z., Luo, F., Zhang, Z.H. & Zeng, L. 2009. Umbilical cord Wharton’s jelly: A new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Engineering Part A 15(9): 2325-2334.

Ivanova-Todorova, E., Mourdjeva, M., Kyurkchiev, D., Bochev, I., Stoyanova, E., Dimitrov, R., Timeva, T., Yunakova, M., Bukarev, D., Shterev, A., Tivchev, P. & Kyurkchiev, S. 2009. HLA‐G expression is up-regulated by progesterone in mesenchymal stem cells. American Journal of Reproductive Immunology 62(1): 25-33.

Kim, J.H., Jo, C.H., Kim, H.R. & Hwang, Y.I. 2018. Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells International 2018: 8429042.

Lamm, N., Ben-David, U., Golan-Lev, T., Storchová, Z., Benvenisty, N. & Kerem, B. 2016. Genomic instability in human pluripotent stem cells arises from replicative stress and chromosome condensation defects. Cell Stem Cell 18(2): 253-261.

La, R.G., Lo Iacono, M., Corsello, T., Corrao, S., Farina, F. & Anzalone, R. 2013. Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: New perspectives for cellular therapy. Current Stem Cell Research and Therapy 8(1): 100-113.

Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E. & Ringdén, O. 2003. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology 31(10): 890-896.

Lee, D.H., Joo, S.D., Han, S.B., Im, J., Lee, S.H., Sonn, C.H. & Lee, K.M. 2011. Isolation and expansion of synovial CD34(-)CD44(+)CD90(+) mesenchymal stem cells: Comparison of an enzymatic method and a direct explant technique. Connective Tissue Research 52(3): 226-234.

Lee, M., Jeong, S.Y., Ha, J., Kim, M., Jin, H.J., Kwon, S.J., Chang, J.W., Choi, S.J., Oh, W., Yang, Y.S., Kim, J.S. & Jeon, H.B. 2014. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochemical and Biophysical Research Communications 446(4): 983-989.

Leow, S.N., Luu, C.D., Hairul Nizam, M.H., Mok, P.L., Ruhaslizan, R., Wong, H.S., Wan Abdul Halim, W.H., Ng, M.H., Ruszymah, B.H.I., Chowdhury, S.R., Bastion, M.L. & Then, K.Y. 2015. Safety and efficacy of human Wharton's Jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS ONE 10(6): 1-20.

Li, X., Bai, J., Ji, X., Li, R., Xuan, Y. & Wang, Y. 2014. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine 34(3): 695-704.

Lim, J., Razi, Z.R.M., Law, J.X., Nawi, A.M., Idrus, R., Chin, T.G., Mustangin, M. & Ng, M.H. 2018. Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Engineering and Regenerative Medicine 15(1): 75-87.

Lim, J., Razi, Z.R., Law, J., Nawi, A.M., Idrus, R. & Ng, M.H. 2016. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18(12): 1493-1502.

Liu, H., Kemeny, D.M., Heng, B.C., Ouyang, H.W., Melendez, A.J. & Cao, T. 2006. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. Journal of Immunology (Baltimore, Md. : 1950) 176(5): 2864-2871.

Luk, F., de Witte, S.F., Korevaar, S.S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T., van den Engel, S., Gargesha, M., Roy, D., Dor, F.J., Horwitz, E.M., de Bruin, R.W., Betjes, M.G., Baan, C.C., Hoogduijn, M.J. 2016. Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells Development 25(18): 1342-1354.

Meisel, R., Zibert, A., Laryea, M., Göbel, U., Däubener, W. & Dilloo, D. 2004. Human bone marrow stromal cells inhibit allogeneic t-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12): 4619-4621.

Montespan, F., Deschaseaux, F., Sensébé, L., Carosella, E.D. & Rouas-Freiss, N. 2014. Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue  express HLA-G and display immunomodulatory properties in HLA-mismatched settings: Implications in bone repair therapy. Journal of Immunology Research 2014: 230346.

Ng, M.H., Duski, S., Tan, K.K., Yusof, M.R., Low, K.C., Rose, I.M., Mohamed, Z., Saim A. & Idrus, R. 2014. Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function. BioMed Research International 85(2): 301-312.

Paula, A.C., Martins, T.M., Zonari, A., Frade, S.P., Angelo, P.C., Gomes, D.A. & Goes, A.M. 2015. Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Research and Therapy 6(1): 76.

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143-147.

Qu, G., Xie, X., Li, X., Chen, Y., De Isla, N., Huselstein, C., Stoltz, J.F. & Li, Y. 2018. Immunomodulatory function of mesenchymal stem cells: Regulation and application. Journal of Cellular Immunotherapy 4(1): 1-3.

Ramli, K., Aminath, I.G., Ahmad, A.A., Htwe, O., Mohamed Haflah, N.H., Law, Z.K., Hasan, S., Naicker, A.S., Mokhtar, S.A., Muhammad Ariffin, M.H., Baharuddin, A., Tan, G.C., Idrus, R., Abdullah, S. & Ng, M.H. 2019. Efficacy of human cell-seeded muscle-stuffed vein conduit in rat sciatic nerve repair. Tissue Engineering Part A 25(19-20): 1438-1455.

Ren, G., Zhao, X., Zhang, L., Zhang, J., L'Huillier, A., Ling, W., Roberts, A.I., Le, A.D., Shi, S., Shao, C. & Shi, Y. 2010. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology 184(5): 2321-2328.

Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A.I., Zhao, R.C. & Shi, Y. 2008. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2): 141-150.

Rheinländer, A., Schraven, B. & Bommhardt, U. 2018. CD45 in human physiology and clinical medicine. Immunology Letters 196: 22-32.

Scheers, I., Lombard, C., Paganelli, M., Campard, D., Najimi, M., Gala, J.L., Decottignies, A. & Sokal, E. 2013. Human umbilical cord matrix stem cells maintain multilineage differentiation  abilities and do not transform during long-term culture. PLoS ONE 8(8): e71374.

Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P., Rouas-Freiss, N., Carosella, E.D. & Deschaseaux, F. 2008. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26(1): 212-222.

Shaer, A., Azarpira, N., Aghdaie, M.H. & Esfandiari, E. 2014. Isolation and characterization of human mesenchymal stromal cells derived from placental decidua basalis; Umbilical cord Wharton’s jelly and amniotic membrane. Pakistan Journal of Medical Sciences 30(5): 1022-1026.

Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C. & Guinan, E.C. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 75(3): 389-397.

Ude, C.C., Ng, M.H., Chen, C.H., Htwe, O., Amaramalar, N.S., Hassan, S., Djordjevic, I., Rani, R.A., Ahmad, J., Yahya, N.M., Saim, A.B. & Idrus, R.B. 2015. Improved functional assessment of osteoarthritic knee joint after chondrogenically induced cell treatment. Osteoarthritis and Cartilage 23(8): 1294-1306.

Vellasamy, S., Sandrasaigaran, P., Vidyadaran, S., George, E. & Ramasamy, R. 2012. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World Journal of Stem Cells 4(6): 53-61.

Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W. & Ho, A.D. 2005. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology 33(11): 1402-1416.

Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337.

Wang, M., Qiu, Y., Wang, X., Zhao, F., Jin, M., Xu, M., Rong, R., Ge, H., Zhang, Y., Wang, X. & Zhu, T. 2011. Role of HLA-G and NCR in protection of umbilical cord blood haematopoietic stem  cells from NK cell mediated cytotoxicity. Journal of Cellular and Molecular Medicine 15(10): 2040-2045.

Wang, M., Yuan, Q. & Xie, L. 2018. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells International 2018: 3057624.

Weiss, A.B.R. & Dahlke, M.H. 2019. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Frontiers in Immunology 10: 1191.

Weiss, M.L., Anderson, C., Medicetty, S., Seshareddy, K.B., Weiss, R.J., Vander Werf, I., Troyer, D. & McIntosh, K.R. 2008. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26(11): 2865-2874.

Ylöstalo, J.H., Bartosh, T.J., Coble, K. & Prockop, D.J. 2012. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to  produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 30(10): 2283-2296.

 

*Corresponding author; email: angela@ppukm.ukm.edu.my

 

 

 

previous