Sains
Malaysiana 50(6)(2021): 1715-1726
http://doi.org/10.17576/jsm-2021-5006-18
Immunomodulatory
Properties of Wharton’s Jelly-Derived Mesenchymal Stem Cells from Three
Anatomical Segments of Umbilical Cord
(Sifat
Imunomodulasi Sel Stem Mesenkima Jeli Wharton yang Dipencilkan daripada Tiga
Segmen Anatomi Tali Pusat)
JEZAMINE LIM1, SUE PING
ENG1, WEI YEN YEOH1, YIK WAN LOW1, NUR MOHD
SHAFWAN BIN JUSOH1, AIN SYAHIRAH BINTI RAHMAT1, AMIRAH
SHAHRANI1, FAIQ BAHRANI YAHYA1, RUSHDA ADIBA ABDUL RAHMAN1,
ZAINUL RASHID MOHAMAD RAZI2, CHOOI FUN LEONG3, SHINSMON
JOSE1 & MIN HWEI NG1*
1Centre
for Tissue Engineering & Regenerative Medicine, Universiti Kebangsaan
Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Federal
Territory, Malaysia
2Department
of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre,
Jalan Yaacob Latif, 56000 Kuala Lumpur, Federal Territory, Malaysia
3Department
of Haematology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob
Latif, 56000 Kuala Lumpur, Federal Territory, Malaysia
Received: 25 February 2020/Accepted:
9 October 2020
ABSTRACT
Mesenchymal
stem cells (MSCs) are multipotent progenitor cells that are reported to
be immune-privileged and immune-evasive. MSCs are capable of
differentiating into specific cell types for subsequent use in cell-based
therapy. They
express low levels of human leucocyte antigen (HLA)-ABC and no HLA-DR.
Wharton’s jelly-derived MSCs (WJ-MSCs) were also found to express human
leukocyte antigen G (HLA-G), which renders them immunosuppressive. This study
aimed to determine whether cultured WJ-MSCs retain their immune-privileged and
immune-evasive properties after cell differentiation, and whether these
properties differ among MSCs derived from different anatomical segments of the
umbilical cord. Umbilical cords of healthy pregnant mothers undergoing
caesarean section were obtained and grouped by three anatomical segments: fetal,
middle, and maternal segments. WJ-MSCs were isolated, culture-expanded, and
differentiated into osteogenic cells. Expression of HLA-DR, HLA-ABC, and HLA-G
were quantified using flow cytometry. Both undifferentiated and
osteodifferentiated WJ-MSCs were subsequently co-cultured with allogeneic peripheral
blood mononuclear cells with/without lipopolysaccharide (LPS) stimulation for
five days. Lymphocyte proliferation assay was performed using carboxyfluorescein
succinimidyl ester (CFSE) as a tracker. Our results showed no
significant difference existed in the HLA profiles among WJ-MSCs from different
segments and between WJ-MSCs with and without osteogenic differentiation. Mean
levels for HLA-G, HLABC, and HLA-DR were 24.82±17.64, 52.50±18.41, and
1.00±1.68%, respectively. Stimulation with LPS and WJ-MSCs increased peripheral
blooc mononuclear cells (PBMC) proliferation. However, PBMC proliferation was
significantly lower when PBMCs were co-cultured with osteodifferentiated
WJ-MSCs (p < .05; with LPS stimulation and p < .001 without LPS stimulation)
than when they were co-cultured with undifferentiated WJ-MSCs. These findings
suggest that cultured WJ-MSCs stimulate lymphocyte proliferation and are not
immune-privileged. Osteodifferentiated WJ-MSCs reduced the immunogenicity of
WJ-MSCs, and this reduction in PBMC proliferation was even more pronounced in
the presence of LPS (p < .05). In conclusion, cultured WJ-MSCs are not
immune-privileged. Osteodifferentiated WJ-MSCs are less immunogenic than
undifferentiated WJ-MSCs, in which case hypoimmunogenicity is more profound
under LPS-stimulated conditions.
Keywords:
Immunomodulation; peripheral blood mononuclear cells; umbilical cord; Wharton’s
jelly mesenchymal stem cell
ABSTRAK
Sel
Stem Mesenkima (MSCs) adalah sel progenitor multipoten yang boleh membeza menjadi
sel yang khusus dan ini berpotensi digunakan untuk membaikpulih tisu yang
rosak. MSC juga mempunyai sifat menindas atau mengelak gerak balas imun kerana
ia mengungkap antigen leukosit manusia kelas I iaitu HLA-ABC yang rendah malah
tidak mengungkap antigen leukosit manusia kelas II iaitu HLA-DR. Satu
keistimewaan sel stem mesenkima yang dipencil daripada bahagian jeli Wharton
tali pusat (WJ-MSCs) ialah ia juga menggunakan HLA-G, sejenis antigen leukosit
kelas I dan ini menyebabkan WJ-MSC mempunyai daya menindas gerak balas imun
yang lebih tinggi. Dalam kajian ini, matlamat kami adalah untuk menentukan sama
ada WJ-MSC yang dipencilkan daripada segmen tali pusat yang berlainan dapat
mengekal keistimewaan keimunan asalnya. Tali pusat daripada ibu yang sihat dan
menjalani pembedahan caesarean telah diperoleh dan dibahagikan kepada tiga
segmen anatomi, iaitu segmen bahagian fetus, tengah dan ibu. Selepas itu,
WJ-MSCs dipencilkan, dikultur dan dibezakan kepada sel osteogenik. Ekspresi
HLA-DR, HLA-ABC dan HLA-G diukur melalui sitometri aliran. WJ-MSCs yang
dibezakan kepada sel osteogenik atau MSC asli dibiakkan bersama dengan sel
mononuklear darah alogenik dengan atau tanpa rangsangan lipopolisakarida (LPS)
selama 5 hari. Ujian proliferasi sel limfosit dijalankan menggunakan ester
karboksifluoresein sinksinmidil (CFSE) sebagai penanda jejak. Hasil daripada
kajian ini menunjukkan bahawa tiada perbezaan yang signifikan dalam profil HLA
antara WJ-MSCs daripada segmen yang berbeza dan juga antara WJ-MSC asli dan WJMSC
pembezaan osteogenik. Purata ungkapan HLA-G, HL-ABC dan HLA-DR masing-masing
adalah 24.82.0±17.64, 52.50±18.41, 1.00±1.68%. Penambahan LPS merangsang
proliferasi sel limfosit. Tetapi, apabila sel limfosit dikultur bersama dengan
WJ-MSC daripada segmen yang berbeza, proliferasi sel limfosit menurun (p <
.05; dengan rangsangan LPS) dan (p < .001 tanpa rangsangan LPS). Penemuan
ini mencadangkan bahawa WJ-MSC sebenarnya tidak dapat mengelak gerak balas
imun. WJ-MSC pembezaan osteogenik dapat mengurangkan keimunogenan WJ-MSC dan
penurunan proliferasi sel limfosit adalah lebih ketara apabila sel limfosit
dirangsang oleh LPS (p < .05). Secara kesimpulan, WJ-MSC tidak dapat
mengelak gerak balas imun. WJ-MSC pembezaan osteogenik kurang keimunogenan
daripada WJ-MSC asli, lebih-lebih lagi jika dirangsang oleh LPS.
Kata kunci: Keimunogenan; sel
limfosit; sel stem mesenkima jeli Wharton; tali pusat
REFERENCES
Ab
Kadir, R., Zainal Ariffin, S.H., Abdul Wahab, R.M., Kermani, S. & Senafi,
S. 2012. Characterization of mononucleated human peripheral blood cells. The Scientific World Journal 2012:
843843.
Abumaree, M.H., Al Jumah, M.A.,
Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F.M., Fatani, A.S., ChamLey, L.W. & Knawy, B.A.
2013. Human placental mesenchymal stem cells (PMSCs) play a role as immune
suppressive cells by shifting macrophage differentiation from inflammatory M1
to anti-inflammatory M2 macrophages. Stem
Cell Reviews and Reports 9(5): 620-641.
Allickson, J.G., Sanchez, A.,
Yefimenko, N., Borlongan, C.V. & Sanberg, P.R. 2011. Recent studies
assessing the proliferative capability of a novel adult stem cell identified in
menstrual blood. The Open Stem Cell
Journal 3: 4-10.
Andrews, P.W., Ben-David, U.,
Benvenisty, N., Coffey, P., Eggan, K., Knowles, B.B., Nagy, A., Pera, M.,
Reubinoff, B., Rugg-Gunn, P.J. & Glyn, N.S. 2017. Assessing the safety of
human pluripotent stem cells and their derivatives for clinical applications. Stem Cell Reports 9(1): 1-4.
Bartholomew, A., Sturgeon, C.,
Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S.,
Ucker, D., Deans, R., Moseley, A. & Hoffman, R. 2002. Mesenchymal stem
cells suppress lymphocyte proliferation in
vitro and prolong skin graft survival in
vivo. Experimental Hematology 30(1): 42-48.
Bernardo, M.E. & Fibbe, W.E.
2013. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell 13(4): 392-402.
Chen, G., Yue, A., Ruan, Z., Yin,
Y., Wang, R., Ren, Y. & Zhu, L. 2014. Human umbilical cord-derived
mesenchymal stem cells do not undergo malignant transformation during long-term
culturing in serum-free medium. PLoS ONE 9(6): e98565.
Cho, D., Kim, M.R., Jeong, H.,
Jeong, H.C., Jeong, M.H., Yoon, S.H., Kim, Y.S. & Ahn, Y. 2014. Mesenchymal
stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental and Molecular Medicine 46(1): e70.
Deng, Y., Zhang, Y., Ye, L., Zhang,
T., Cheng, J., Chen, G., Zhang, Q. & Yang, Y. 2016. Umbilical cord-derived
mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype
by secreting IL6 and HGF. Scientific
Reports 6: 37566.
Di Nicola, M., Carlo-Stella, C.,
Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S. &
Gianni, A.M. 2002. Human bone marrow stromal cells suppress T-lymphocyte
proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10): 3838-3843.
Ding, D.C., Chou, H.L., Chang, Y.H.,
Hung, W.T., Liu, H.W. & Chu, T.Y. 2016. Characterization of HLA-G and
related immunosuppressive effects in human umbilical cord stroma-derived stem
cells. Cell Transplantation 25(2):
217-228.
Dominici, M., Le Blanc, K., Mueller,
I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A.,
Prockop, D. & Horwitz, E. 2006. Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society For Cellular Therapy
position statement. Cytotherapy 8(4):
315-317.
Ema, H., Morita, Y. & Nakauchi,
H. 2004. Handbook of Stem Cells Vol. 2: Phenotype of Mouse Hematopoietic
Stem Cells. New York: Elsevier Academic Press.
Glenn, J.D. & Whartenby, K.A.
2014. Mesen chymal stem cells: Emerging
mechanisms of immunomodulation and therapy. World
Journal of Stem Cells 6(5): 526-539.
Guerrouahen, B.S., Sidahmed, H., Al
Sulaiti, A., Al Khulaifi, M. & Cugno, C. 2019. Enhancing mesenchymal
stromal cell immunomodulation for treating conditions influenced by the immune
system. Stem Cells International 2019: 7219297.
Hou, T.Y., Xu, J.Z., Wu, X.H., Xie,
Z., Luo, F., Zhang, Z.H. & Zeng, L. 2009. Umbilical cord Wharton’s jelly: A
new potential cell source of mesenchymal stromal cells for bone tissue
engineering. Tissue Engineering Part A 15(9): 2325-2334.
Ivanova-Todorova, E., Mourdjeva, M.,
Kyurkchiev, D., Bochev, I., Stoyanova, E., Dimitrov, R., Timeva, T., Yunakova,
M., Bukarev, D., Shterev, A., Tivchev, P. & Kyurkchiev, S. 2009.
HLA‐G expression is up-regulated by progesterone in mesenchymal stem cells. American Journal of Reproductive
Immunology 62(1): 25-33.
Kim, J.H., Jo, C.H., Kim, H.R. &
Hwang, Y.I. 2018. Comparison of immunological characteristics of mesenchymal
stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells International 2018: 8429042.
Lamm, N., Ben-David, U., Golan-Lev,
T., Storchová, Z., Benvenisty, N. & Kerem, B. 2016. Genomic instability in
human pluripotent stem cells arises from replicative stress and chromosome
condensation defects. Cell Stem Cell 18(2): 253-261.
La, R.G., Lo Iacono, M., Corsello,
T., Corrao, S., Farina, F. & Anzalone, R. 2013. Human Wharton’s jelly
mesenchymal stem cells maintain the expression of key immunomodulatory
molecules when subjected to osteogenic, adipogenic and chondrogenic
differentiation in vitro: New
perspectives for cellular therapy. Current
Stem Cell Research and Therapy 8(1): 100-113.
Le Blanc, K., Tammik, C., Rosendahl,
K., Zetterberg, E. & Ringdén, O. 2003. HLA expression and immunologic
properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology 31(10): 890-896.
Lee, D.H., Joo, S.D., Han, S.B., Im,
J., Lee, S.H., Sonn, C.H. & Lee, K.M. 2011. Isolation and expansion of
synovial CD34(-)CD44(+)CD90(+) mesenchymal stem cells: Comparison of an
enzymatic method and a direct explant technique. Connective Tissue Research 52(3): 226-234.
Lee, M., Jeong, S.Y., Ha, J., Kim,
M., Jin, H.J., Kwon, S.J., Chang, J.W., Choi, S.J., Oh, W., Yang, Y.S., Kim,
J.S. & Jeon, H.B. 2014. Low immunogenicity of allogeneic human umbilical
cord blood-derived mesenchymal stem cells in
vitro and in vivo. Biochemical and Biophysical Research
Communications 446(4): 983-989.
Leow, S.N., Luu, C.D., Hairul Nizam,
M.H., Mok, P.L., Ruhaslizan, R., Wong, H.S., Wan Abdul Halim, W.H., Ng, M.H.,
Ruszymah, B.H.I., Chowdhury, S.R., Bastion, M.L. & Then, K.Y. 2015. Safety
and efficacy of human Wharton's Jelly-derived mesenchymal stem cells therapy
for retinal degeneration. PLoS ONE 10(6):
1-20.
Li, X., Bai, J., Ji, X., Li, R.,
Xuan, Y. & Wang, Y. 2014. Comprehensive characterization of four different
populations of human mesenchymal stem cells as regards their immune properties,
proliferation and differentiation. International
Journal of Molecular Medicine 34(3): 695-704.
Lim, J., Razi, Z.R.M., Law, J.X.,
Nawi, A.M., Idrus, R., Chin, T.G., Mustangin, M. & Ng, M.H. 2018.
Mesenchymal stromal cells from the maternal segment of human umbilical cord is
ideal for bone regeneration in allogenic setting. Tissue Engineering and Regenerative Medicine 15(1): 75-87.
Lim, J., Razi, Z.R., Law, J., Nawi,
A.M., Idrus, R. & Ng, M.H. 2016. MSCs can be differentially isolated from
maternal, middle and fetal segments of the human umbilical cord. Cytotherapy 18(12): 1493-1502.
Liu, H., Kemeny, D.M., Heng, B.C.,
Ouyang, H.W., Melendez, A.J. & Cao, T. 2006. The immunogenicity and
immunomodulatory function of osteogenic cells differentiated from mesenchymal
stem cells. Journal of Immunology
(Baltimore, Md. : 1950) 176(5): 2864-2871.
Luk, F., de Witte, S.F., Korevaar, S.S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T., van den Engel, S., Gargesha, M., Roy, D., Dor, F.J., Horwitz, E.M., de Bruin, R.W., Betjes, M.G., Baan, C.C., Hoogduijn, M.J. 2016. Inactivated mesenchymal stem cells maintain immunomodulatory
capacity. Stem Cells Development 25(18): 1342-1354.
Meisel, R., Zibert, A., Laryea, M.,
Göbel, U., Däubener, W. & Dilloo, D. 2004. Human bone marrow stromal cells
inhibit allogeneic t-cell responses by indoleamine 2,3-dioxygenase-mediated
tryptophan degradation. Blood 103(12): 4619-4621.
Montespan, F., Deschaseaux, F., Sensébé,
L., Carosella, E.D. & Rouas-Freiss, N. 2014. Osteodifferentiated
mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory
properties in HLA-mismatched settings: Implications in bone repair therapy. Journal of Immunology Research 2014:
230346.
Ng, M.H., Duski, S., Tan, K.K.,
Yusof, M.R., Low, K.C., Rose, I.M., Mohamed, Z., Saim A. & Idrus, R. 2014.
Repair of segmental load-bearing bone defect by autologous mesenchymal stem
cells and plasma-derived fibrin impregnated ceramic block results in early
recovery of limb function. BioMed
Research International 85(2): 301-312.
Paula, A.C., Martins, T.M., Zonari,
A., Frade, S.P., Angelo, P.C., Gomes, D.A. & Goes, A.M. 2015. Human adipose
tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC
expression increasing proliferation but bypassing spontaneous cell
transformation. Stem Cell Research and
Therapy 6(1): 76.
Pittenger, M.F., Mackay, A.M., Beck,
S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W.,
Craig, S. & Marshak, D.R. 1999. Multilineage potential of adult human
mesenchymal stem cells. Science 284(5411): 143-147.
Qu, G., Xie, X., Li, X., Chen, Y.,
De Isla, N., Huselstein, C., Stoltz, J.F. & Li, Y. 2018. Immunomodulatory
function of mesenchymal stem cells: Regulation and application. Journal of Cellular Immunotherapy 4(1):
1-3.
Ramli, K., Aminath, I.G., Ahmad,
A.A., Htwe, O., Mohamed Haflah, N.H., Law, Z.K., Hasan, S., Naicker, A.S.,
Mokhtar, S.A., Muhammad Ariffin, M.H., Baharuddin, A., Tan, G.C., Idrus, R.,
Abdullah, S. & Ng, M.H. 2019. Efficacy of human cell-seeded muscle-stuffed
vein conduit in rat sciatic nerve repair. Tissue
Engineering Part A 25(19-20): 1438-1455.
Ren, G., Zhao, X., Zhang, L., Zhang,
J., L'Huillier, A., Ling, W., Roberts, A.I., Le, A.D., Shi, S., Shao, C. &
Shi, Y. 2010. Inflammatory cytokine-induced intercellular adhesion molecule-1
and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical
for immunosuppression. Journal of
Immunology 184(5): 2321-2328.
Ren, G., Zhang, L., Zhao, X., Xu,
G., Zhang, Y., Roberts, A.I., Zhao, R.C. & Shi, Y. 2008. Mesenchymal stem
cell-mediated immunosuppression occurs via concerted action of chemokines and
nitric oxide. Cell Stem Cell 2(2):
141-150.
Rheinländer, A., Schraven, B. &
Bommhardt, U. 2018. CD45 in human physiology and clinical medicine. Immunology Letters 196: 22-32.
Scheers, I., Lombard, C., Paganelli,
M., Campard, D., Najimi, M., Gala, J.L., Decottignies, A. & Sokal, E. 2013.
Human umbilical cord matrix stem cells maintain multilineage
differentiation abilities and do not transform
during long-term culture. PLoS ONE 8(8): e71374.
Selmani, Z., Naji, A., Zidi, I.,
Favier, B., Gaiffe, E., Obert, L., Borg, C., Saas, P., Tiberghien, P.,
Rouas-Freiss, N., Carosella, E.D. & Deschaseaux, F. 2008. Human leukocyte
antigen-G5 secretion by human mesenchymal stem cells is required to suppress T
lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+
regulatory T cells. Stem Cells 26(1):
212-222.
Shaer, A., Azarpira, N., Aghdaie,
M.H. & Esfandiari, E. 2014. Isolation and characterization of human
mesenchymal stromal cells derived from placental decidua basalis; Umbilical
cord Wharton’s jelly and amniotic membrane. Pakistan
Journal of Medical Sciences 30(5): 1022-1026.
Tse, W.T., Pendleton, J.D., Beyer,
W.M., Egalka, M.C. & Guinan, E.C. 2003. Suppression of allogeneic T-cell
proliferation by human marrow stromal cells: Implications in transplantation. Transplantation 75(3): 389-397.
Ude, C.C., Ng, M.H., Chen, C.H.,
Htwe, O., Amaramalar, N.S., Hassan, S., Djordjevic, I., Rani, R.A., Ahmad, J.,
Yahya, N.M., Saim, A.B. & Idrus, R.B. 2015. Improved functional assessment
of osteoarthritic knee joint after chondrogenically induced cell treatment. Osteoarthritis and Cartilage 23(8):
1294-1306.
Vellasamy, S., Sandrasaigaran, P.,
Vidyadaran, S., George, E. & Ramasamy, R. 2012. Isolation and
characterisation of mesenchymal stem cells derived from human placenta tissue. World Journal of Stem Cells 4(6): 53-61.
Wagner, W., Wein, F., Seckinger, A.,
Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein,
V., Ansorge, W. & Ho, A.D. 2005. Comparative characteristics of mesenchymal
stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology 33(11):
1402-1416.
Wang, H.S., Hung, S.C., Peng, S.T.,
Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004.
Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337.
Wang, M., Qiu, Y., Wang, X., Zhao,
F., Jin, M., Xu, M., Rong, R., Ge, H., Zhang, Y., Wang, X. & Zhu, T. 2011.
Role of HLA-G and NCR in protection of umbilical cord blood haematopoietic
stem cells from NK cell mediated
cytotoxicity. Journal of Cellular and
Molecular Medicine 15(10): 2040-2045.
Wang, M., Yuan, Q. & Xie, L.
2018. Mesenchymal stem cell-based immunomodulation: Properties and clinical
application. Stem Cells International 2018: 3057624.
Weiss, A.B.R. & Dahlke, M.H.
2019. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of action
of living, apoptotic, and dead MSCs. Frontiers
in Immunology 10: 1191.
Weiss, M.L., Anderson, C.,
Medicetty, S., Seshareddy, K.B., Weiss, R.J., Vander Werf, I., Troyer, D. &
McIntosh, K.R. 2008. Immune properties of human umbilical cord Wharton’s
jelly-derived cells. Stem Cells 26(11): 2865-2874.
Ylöstalo, J.H., Bartosh, T.J.,
Coble, K. & Prockop, D.J. 2012. Human mesenchymal stem/stromal cells
cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an
anti-inflammatory phenotype. Stem Cells 30(10): 2283-2296.
*Corresponding author; email: angela@ppukm.ukm.edu.my
|