Sains
Malaysiana 50(6)(2021): 1815-1825
http://doi.org/10.17576/jsm-2021-5006-26
A Bibliometric
Analysis of COVID-19 Research in Malaysia using Latent Dirichlet Allocation
(Suatu Analisis
Bibliometrik Kajian COVID-19 di Malaysia menggunakan Agihan Dirichlet
Terpendam)
ZAMIRA HASANAH ZAMZURI*
Department of
Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 29 January 2021/Accepted:
28 April 2021
ABSTRACT
Coronavirus
COVID-19 shocking the whole world due to its highly contagious characteristics
implicating not only public health, but also economy and social life. Since the
effects are momentous, plenty of research have been conducted and still ongoing
in order to study and to learn more about this virus and how it changing our
daily life. In this paper, we explore 134 articles published in 2020 related to
COVID-19 and narrowing the scope of study to Malaysia. An alternative route was
taken by employing Latent Dirichlet Allocation (LDA) to identify underlying
themes or topics in these publications. Two separate analyses were conducted,
one is to the paper’s titles and another one to the journal’s names. The
findings identified three topics for paper’s titles data are clinical study,
impact of COVID-19 on various fields and Movement Control Order (MCO). The last
topic shows the locality criterion in the studied papers as the term MCO was
only used in Malaysia. For the journal’s names, three topics identified were
medical study, public health also business and education. Two papers with the most number of citations are both in social sciences.
Investigating the properties of these topics, we found that papers on clinical
studies are the ones with more chance to be cited and published by reputable
publishers. These findings may help researchers on planning and strategizing
for future research on COVID-19 specifying on Malaysia cases.
Keywords:
COVID-19; movement control order; social sciences
ABSTRAK
Koronavirus
COVID-19 telah mengejutkan seluruh dunia kerana ciri penularan jangkitannya
yang melibatkan bukan sahaja kesihatan awam, tetapi juga ekonomi dan kehidupan
sosial. Oleh kerana kesannya sangat penting, banyak kajian telah dijalankan dan
masih dijalankan untuk mengkaji dan mengetahui lebih lanjut tentang virus ini
dan bagaimana ia mengubah kehidupan seharian kita. Dalam makalah ini, kami
mengkaji 134 artikel yang diterbitkan pada tahun 2020 berkaitan dengan COVID-19
dan mengecilkan skop kajian kepada Malaysia. Satu langkah alternatif telah
diambil dengan menggunakan Latent Dirichlet Allocation (LDA) untuk mengenal
pasti tema atau topik yang mendasari penerbitan ini. Dua analisis berasingan
telah dijalankan, satu kepada judul makalah dan satu lagi untuk nama jurnal.
Hasil kajian telah mengenal pasti tiga topik untuk data tajuk kertas iaitu
kajian klinikal, kesan COVID-19 dalam pelbagai bidang dan Perintah Kawalan
Pergerakan (MCO). Topik terakhir menunjukkan kriteria lokaliti dalam makalah
yang dikaji kerana istilah MCO hanya digunakan di Malaysia. Untuk nama jurnal,
tiga topik yang dikenal pasti adalah kajian perubatan, kesihatan awam serta
perniagaan dan pembelajaran. Dua makalah dengan petikan tertinggi adalah dalam
bidang sains sosial. Dalam kajian sifat topik ini, kami mendapati bahawa
makalah mengenai kajian klinikal mempunyai peluang lebih baik untuk dipetik dan
diterbitkan oleh penerbit terkemuka. Penemuan ini dapat membantu para
penyelidik untuk merancang dan menyusun strategi untuk penyelidikan masa depan
mengenai COVID-19 khusus untuk kes-kes di Malaysia.
Kata
kunci: COVID-19; perintah kawalan pergerakan; sains sosial
REFERENCES
Ahamad, D., Mahmoud, A. &
Mahmoud, M. 2017. Strategy and implementation of web mining tools. International Journal of Innovative Research
in Advanced Engineering 12(4): 1-7. doi: 10.26562/IJIRAE.2017.DCAE10081.
Aristovnik,
A., Ravšelj, D. & Umek, L. 2020. A bibliometric analysis of COVID-19
across science and social science research landscape. Sustainability 12(21): 9132.
Azlan,
A.A., Hamzah, M.R., Sern, T.J., Ayub, S.H. & Mohamad, E. 2020. Public
knowledge, attitudes and practices towards COVID-19: A cross-sectional
study in Malaysia. PLoS ONE 15(5):
e0233668.
Chahrour, M., Assi, S., Bejjani, M., Nasrallah, A.A., Salhab, H., Fares, M. & Khachfe, H.H. 2020. A bibliometric analysis of
COVID-19 research activity: A call for increased output. Cureus 12(3): e7357. doi: 10.7759/cureus.7357.
Cai, C.W., Linnenluecke, M.K., Marrone, M. & Singh,
A.K. 2019. Machine learning and expert judgement: Analyzing emerging topics in
accounting and finance research in the Asia-Pacific. Abacus 55(4): 709-733.
Deng,
Z., Chen, J. & Wang, T. 2020. Bibliometric and visualization
analysis of human coronaviruses: Prospects and implications for COVID-19
research. Front. Cell. Infect. Microbiol. 10: 581404. doi: 10.3389/fcimb.2020.581404.
Elengoe, A. 2020.
COVID-19 outbreak in Malaysia. Osong
Public Health and Research Perspectives 11(3): 93-100.
Fan, J., Gao, Y., Zhao, N., Dai, R.,
Zhang, H., Feng, X., Shi, G., Tian, J., Chen, C., Hambly, B.D. & Bao, S.
2020. Bibliometric analysis on COVID-19: A comparison of research between
English and Chinese studies. Frontiers in
Public Health 8: 477. doi: 10.3389/fpubh.2020.00477.
Holcomb, Z.C. 1998. Fundamentals of
Descriptive Statistics. New York: Taylor & Francis.
McLaren, H.J., Wong, K.R., Nguyen, K.N. &
Mahamadachchi, K.N.D. 2020. COVID-19 and women’s triple burden: Vignettes from
Sri Lanka, Malaysia, Vietnam and Australia. Social Sciences 9(5):
87.
Onan, A., Korukoglu, S. & Bulut, H. 2016.
LDA-based topic modelling in text sentiment. Classification: An empirical
analysis. International Journal of Computational
Linguistics and Applications 7: 101-119.
Pham-Gia, T. & Hung,
T.L. 2001. The mean and median absolute deviations. Mathematical and Computer Modelling 34: 921-936.
Shelton, R.C.,
Hatzenbuehler, M.L. & Metsch, L.R. 2017. Future perfect? The future of the
social sciences in public health. Front.
Public Health 5: 357. doi: 10.3389/fpubh.2017.00357
Sirisuriya,
S.C.M. 2015. A comparative study on web scraping. Proceedings of 8th International Research Conference of KDU. General
Sir John Kotelawala Defence University. pp. 135-140.
Tahamtan,
I., Afshar, A.S. & Ahamdzadeh, K. 2016. Factors affecting number of
citations: A comprehensive review of the literature. Scientometrics 107: 1195-1225.
Verma, S. & Gustafsson,
A. 2020. Investigating the emerging COVID-19 research trends in the field of
business and management: A bibliometric analysis approach. Journal of Business Research 118:
253-261.
Wickham, H. 2011. ggplot2. Interdisciplinary
Reviews Computational Statistics 3(2): 180-185.
Zamzuri, Z.H. 2021.
Underreporting traffic accidents in Malaysia - A sentiment analysis. International Conference on Mathematics,
Statistics and Their Applications 36: 01015.
Zamzuri, Z.H. &
Gwee, J.H. 2020. Comparing and forecasting using stochastic mortality models: A
Monte Carlo simulation. Sains Malaysiana 49(8): 2013-2022.
Zamzuri, Z.H., Sapuan, M.S. & Ibrahim, K. 2018. The extra zeros in traffic accident data: A
study on the mixture of discrete distributions. Sains Malaysiana 47(8): 1931-1940.
Zhaou, W., Chen, J.J.,
Perkins, R., Liu, Z., Ge, W., Ding, Y. & Zou, W. 2015. A heuristic approach
to determine an appropriate number of topics in topic modelling. BMC Bioinformatics 16: S8. https://doi.org/10.1186/1471-2105-16-S13-S8.
*Corresponding author;
email: zamira@ukm.edu.my
|