Sains Malaysiana 50(7)(2021): 1827-1841
http://doi.org/10.17576/jsm-2021-5007-01
Temperature
Phased Anaerobic Digestion at the Intermediate Zone of 45 °C: Performances,
Stability and Pathogen Deactivation
(Pencernaan Anaerobik Fasa Suhu di Zon Pertengahan 45 °C: Prestasi, Kestabilan dan Pendeaktifan Patogen)
NURUOL SYUHADAA MOHD1,2*, BAOQIANG LI2, SHALIZA
IBRAHIM3 & RUMANA RIFFAT2
1Department of Civil Engineering, University of Malaya,
Lembah Pantai, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Civil & Environmental Engineering, George
Washington University, Washington, DC 20052, United States of America
3Institute of Ocean and Earth Sciences (IOES), University
of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Federal Territory, Malaysia
Received:
5 February 2020/Accepted: 7 November 2020
ABSTRACT
Temperature
phased anaerobic digestion (TPAD) systems with conventional sequences (first
stage of 55 ℃ and second stage of 35 ℃) have been widely studied.
However, very limited studies were available on TPAD system with the first
stage operated at the intermediate zone of 45 °C, mainly due to the notion that
limited microbial activity occurs within this zone. The objective of this
research was to evaluate the performance, stability and the capability of 45 °C
TPAD in producing class A biosolids, in comparison to a conventional TPAD. Four
combinations of TPAD systems were studied, 45 ℃ TPAD 2.5/10 (1st stage
solids retention time (SRT) 2.5 days/2nd stage SRT 10 days), 45 ℃ TPAD 7.5/10,
55 ℃ TPAD 2.5/10 and 55 ℃ TPAD 7.5/10. Among all, 45 ℃ TPAD
7.5/10 was found to have the best performances, attributed to its high volatile
solids (VS) destruction (58%), minimal acetate accumulation (127 mg/L), high
methane yield (0.58 m3 CH4/kg VS removed), high COD
destruction solid COD (sCOD; 74% and total COD (tCOD) 54%) and minimal free NH3 content (67.5
mg/L). As for stability, stable pH distribution, high alkalinity content and
low VFA to alkalinity ratio, indicated a well-buffered system. Additionally,
the system had also able to produce class A biosolids. Therefore, proved that
TPAD system operated at the intermediate zone of 45 ℃ can perform better
than the conventional TPAD, hence, highlighting its economic advantage.
Keywords:
45 °C TPAD; 45 °C anaerobic digestion; class A biosolids; TPAD
ABSTRAK
Sistem pencernaan anaerobik fasa suhu (TPAD) dengan urutan konvensional (peringkat pertama 55 ℃ dan tahap kedua 35 ℃) telah dikaji secara meluas. Walau bagaimanapun, terdapat kajian yang sangat terhad pada sistem TPAD dengan tahap pertama yang beroperasi di zon pertengahan 45 ℃, disebabkan oleh anggapan bahawa aktiviti mikroorganisma adalah terhad di dalam zon ini. Objektif kajian ini adalah untuk menilai prestasi, kestabilan dan keupayaan TPAD 45
℃ dalam menghasilkan biopepejal kelas A, berbanding dengan TPAD konvensional. Empat gabungan sistem TPAD dikaji, 45 ℃
TPAD 2.5/10 (tahap-1 SRT 2.5 hari/ tahap-2 SRT 10 hari), 45 ℃ TPAD 7.5/10, 55℃ TPAD 2.5/10 dan
55℃ TPAD 7.5/10. Antara semua sistem, 45 ℃ TPAD 7.5/10 didapati mempunyai prestasi terbaik, disebabkan oleh penghapusan VS yang tinggi (58%), pengumpulan asetat minimum
(127 mg/L), hasil metana yang tinggi (0.58 m3 CH4/kg VS dikeluarkan), penghapusan COD
yang tinggi (sCOD; 74% dan tCOD 54%) dan kandungan NH3 yang minimum (67.5 mg/L). Bagi aspek kestabilan, pengedaran pH
yang stabil, kandungan alkali yang tinggi dan nisbah VFA kepada kealkalian yang rendah, telah menunjukkan sistem penampanan yang baik. Di samping itu, sistem ini juga mampu menghasilkan biopepejal kelas A. Oleh itu, membuktikan bahawa sistem TPAD yang beroperasi di zon pertengahan 45 ℃ menunjukkan prestasi lebih baik daripada TPAD konvensional, dengan itu, menunjukkan kelebihan daripada segi ekonomi.
Kata kunci: 45 °C TPAD; 45 °C pencerna anaerobik; biopepejal kelas A; TPAD
REFERENCES
Aboudi, K., Quiroga, X.G., Gallego,
C.J.A. & García, L.I.R. 2017. Comparison of single-stage and
temperature-phased anaerobic digestion of sugar beet by-products. 5th
International Conference on Sustainable Solis Waste managemenr-ATHENS2017, Greece.
Akgul, D., Cella, M.A.
& Eskicioglu, C. 2016. Temperature phased anaerobic digestion of municipal
sewage sludge: A Bardenpho treatment plant study. Water Practice and Technology 11(3): 569-573.
Akgul, D., Cella, M.A.
& Eskicioglu, C. 2017. Influences of low-energy input microwave and
ultrasonic pretreatments on single-stage and temperature-phased anaerobic
digestion (TPAD) of municipal wastewater sludge. Energy 123:
271-282.
Alonso, R.M., Río,
R.S.D. & García, M.P. 2016. Thermophilic and mesophilic temperature phase
anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of
sewage sludge and sugar beet pulp lixiviation. Biomass and Bioenergy 93:
107-115.
APHA. 2005. Standard
Methods for the Examination of Water and Wastewater. American Public Health
Association (APHA).
Avery, L.M., Anchang,
K.Y., Tumwesige, V., Strachan, N. & Goude, P.J. 2014. Potential for
pathogen reduction in anaerobic digestion and biogas generation in Sub-Saharan
Africa. Biomass and Bioenergy 70: 112-124.
Bi, S., Qiao, W., Xiong,
L., Ricci, M., Adani, F. & Dong, R. 2019. Effects of organic loading rate
on anaerobic digestion of chicken manure under mesophilic and thermophilic
conditions. Renewable Energy 139: 242-250.
Bolzonella, D., Fatone,
F., Pavan, P. & Cecchi, F. 2005. Anaerobic fermentation of organic
municipal solid wastes for the production of soluble organic compounds. Industrial & Engineering Chemistry
Research 44(10): 3412-3418.
Böske, J., Wirth, B.,
Garlipp, F., Mumme, J. & Weghe, H.V.D. 2015. Upflow anaerobic solid-state
(UASS) digestion of horse manure: Thermophilic vs. mesophilic performance. Bioresource Technology 175: 8-16.
Braun, R., Huber, P.
& Meyrath, J. 1981. Ammonia toxicity in liquid piggery manure digestion. Biotechnology Letters 3(4): 159-164.
EPA. 2003. Technology:
Control of pathogens and vector attractions in sewage sludge, EPA/625/R-92/013
C.F.R. United States Environmental Protection Agency (EPA).
Fernández-Rodríguez, J.,
Pérez, M. & Romero, L. 2016. Semicontinuous temperature-phased anaerobic
digestion (TPAD) of organic fraction of municipal solid waste (OFMSW).
Comparison with single-stage processes. Chemical
Engineering Journal 285: 409-416.
Fu, B., Jiang, Q., Liu,
H. & Liu, H. 2014. Occurrence and reactivation of viable but non-culturable E. coli in sewage sludge after mesophilic and thermophilic anaerobic
digestion. Biotechnology Letters 36(2): 273-279.
Hagos, K., Zong, J., Li,
D., Liu, C. & Lu, X. 2017. Anaerobic co-digestion process for biogas
production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews 76: 1485-1496.
Hameed, S.A., Riffat,
R., Li, B., Naz, I., Badshah, M., Ahmed, S. & Ali, N. 2019. Microbial
population dynamics in temperature-phased anaerobic digestion of municipal
wastewater sludge. Journal of Chemical
Technology & Biotechnology 94(6):
1816-1831.
Han, V. & Dague,
R.R. 1997. Laboratory studies on the temperature-phased anaerobic digestion of
domestic primary sludge. Water
Environment Research 69(6):
1139-1143.
Huang, C., Wang, W.,
Sun, X., Shen, J. & Wang, L. 2020. A novel acetogenic bacteria isolated from
waste activated sludge and its potential application for enhancing anaerobic
digestion performance. Journal of
Environmental Management 255:
1-7.
Jang, H.M., Cho, H.U.,
Park, S.K., Ha, J.H. & Park, J.M. 2014. Influence of thermophilic aerobic
digestion as a sludge pre-treatment and solids retention time
of mesophilic anaerobic digestion on the methane production, sludge
digestion and microbial communities in a sequential digestion process. Water Research 48: 1-14.
Jung, H., Kim, J. &
Lee, C. 2019. Temperature effects on methanogenesis and sulfidogenesis during
anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch
reactors. Microorganisms 7(12): 1-16.
Kahar, A.,
Warmadewanthi, I.D.A.A. & Hermana, J. 2018. Effects of temperature-pH on
liquid phase mass transfer and diffusion coefficients at leachate treatment in
anaerobic bioreactor. Konversi 7(2): 71-79.
Leite, W.R.M., Gottardo,
M., Pavan, P., Filho, P.B. & Bolzonella, D. 2016. Performance and energy
aspects of single and two phase thermophilic anaerobic digestion of waste
activated sludge. Renewable Energy 86: 1324-1331.
Li, Y.F., Abraham, C.,
Nelson, M.C., Chen, P.H., Graf, J. & Yu, Z. 2015. Effect of organic loading
on the microbiota in a temperature-phased anaerobic digestion (TPAD) system
co-digesting dairy manure and waste whey. Applied
Microbiology and Biotechnology 99(20):
8777-8792.
López, A.,
Rodríguez-Chueca, J., Mosteo, R., Gómez, J. & Ormad, M.P. 2020.
Microbiological quality of sewage sludge after digestion treatment: A pilot
scale case of study. Journal of Cleaner
Production 254: 1-12.
McCarty, P.L. 1964.
Anaerobic waste treatment fundamentals. Public
Works 95(9): 107-112.
Mohd, N.S., Husnain, T.,
Li, B., Rahman, A. & Riffat, R. 2015. Investigation of the performance and
kinetics of anaerobic digestion at 45 °C. Journal
of Water Resource and Protection 7(14):
1099-1110.
Neczaj, E. &
Grosser, A. 2019. Biogas production by thermal hydrolysis and thermophilic
anaerobic digestion of waste-activated sludge. In Industrial and Municipal Sludge, edited by Prasad, M.N.V., Favas,
P.J.D.C., Vithanage, M. & Mohan, S. Butterworth-Heinemann: Elsevier Inc.
pp. 741-781.
Prá, M.C.D., Anschau,
A., Busso, C., Gabiatti, N. & Bortoli, M. 2019. Effect of short-chain fatty
acid production on biogas generation. In Improving
Biogas Production: Technological Challenges, Alternative Sources, Future
Developments, edited by, H. Treichel & G. Fongaro. Cham: Springer
International Publishing. pp. 199-216.
Qin, Y., Higashimori,
A., Wu, L.J., Hojo, T., Kubota, K. & Li, Y.Y. 2017. Phase separation and
microbial distribution in the hyperthermophilic-mesophilic-type
temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS). Bioresource Technology 245: 401-410.
Rattanapan, C., Sinchai,
L., Tachapattaworakul Suksaroj, T., Kantachote, D. & Ounsaneha, W. 2019.
Biogas production by co-digestion of canteen food waste and domestic wastewater
under organic loading rate and temperature optimization. Environments 6(2):
1-12.
Riau, V., Rubia,
D.L.M.Á. & Pérez, M. 2010. Temperature-phased anaerobic digestion (TPAD) to
obtain class A biosolids: A semi-continuous study. Bioresource Technology 101(8):
2706-2712.
Sassi, H.P., Ikner,
L.A., Abd-Elmaksoud, S., Gerba, C.P. & Pepper, I.L. 2018. Comparative
survival of viruses during thermophilic and mesophilic anaerobic digestion. Science of The Total Environment 615: 15-19.
Seneesrisakul, K.,
Sutabutr, T. & Chavadej, S. 2018. The effect of temperature on the methanogenic
activity in relation to micronutrient availability. Energies 11(5):
11-17.
Shi, X., Lin, J., Zuo,
J., Li, P., Li, X. & Guo, X. 2017. Effects of free ammonia on volatile
fatty acid accumulation and process performance in the anaerobic digestion of
two typical bio-wastes. Journal of
Environmental Sciences 55: 49-57.
Shi, X., Zhao, J., Chen,
L., Zuo, J., Yang, Y., Zhang, Q., Qin, Z. & Zhou, J. 2019. Genomic dynamics
of full-scale temperature-phased anaerobic digestion treating waste activated
sludge: Focusing on temperature differentiation. Waste Management 87:
621-628.
Srisowmeya, G.,
Chakravarthy, M. & Nandhini Devi, G. 2019. Critical considerations in
two-stage anaerobic digestion of food waste-A review. Renewable and Sustainable Energy Reviews 119: 1-14.
Tangkathitipong, P.,
Intanoo, P., Butpan, J. & Chavadej, S. 2017. Separate production of
hydrogen and methane from biodiesel wastewater with added glycerin by two-stage
anaerobic sequencing batch reactors (ASBR). Renewable
Energy 113: 1077-1085.
Vrieze, J.D., Smet, D.,
Klok, J., Colsen, J., Angenent, L.T. & Vlaeminck, S.E. 2016. Thermophilic
sludge digestion improves energy balance and nutrient recovery potential in
full-scale municipal wastewater treatment plants. Bioresource Technology 218: 1237-1245.
Wang, S., Ma, F., Ma,
W., Wang, P., Zhao, G. & Lu, X. 2019. Influence of temperature on biogas
production efficiency and microbial community in a two-phase anaerobic
digestion system. Water 11(1): 1-13.
Wei, Y., Liu, J., Zhou,
X., Wu, J. & Qian, X. 2019. Effect of solid-liquid separation enhanced by
low-temperature hydrolysis in methanogenic phase on two-phase anaerobic sludge
digestion system. International Journal
of Environmental Science and Technology 16(12): 8573-8584.
Westerholm, M., Levén, L.
& Schnürer, A. 2012. Bioaugmentation of syntrophic acetate-oxidizing
culture in biogas reactors exposed to increasing levels of ammonia. Applied and Environmental Microbiology 78(21): 7619-7625.
Yenigün, O. &
Demirel, B. 2013. Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry 48(5): 901-911.
Yuan, Y., Hu, X., Chen,
H., Zhou, Y., Zhou, Y. & Wang, D. 2019. Advances in enhanced volatile fatty
acid production from anaerobic fermentation of waste activated sludge. Science of The Total Environment 694: 1-12.
Zhang, C., Yuan, Q.
& Lu, Y. 2014. Inhibitory effects of ammonia on methanogen mcrA transcripts
in anaerobic digester sludge. FEMS
Microbiology Ecology 87(2):
368-377.
Zhao, Q. & Kugel, G.
1996. Thermophilic/mesophilic digestion of sewage sludge and organic wastes. Journal of Environmental Science &
Health Part A 31(9):
2211-2231.
*Corresponding
author; email: n_syuhadaa@um.edu.my