Sains Malaysiana 50(7)(2021): 1843-1856
http://doi.org/10.17576/jsm-2021-5007-02
A Comparative Flood Frequency Analysis of High-Flow between Annual
Maximum and Partial Duration Series at Sungai Langat Basin
(Suatu Perbandingan Analisis Kekerapan Banjir Aliran Tinggi antara Siri Maksimum Tahunan dan Siri Tempoh Separa di Lembangan Sungai Langat)
FIRDAUS MOHAMAD HAMZAH*,
HAZRINA TAJUDIN & OTHMAN JAAFAR
Faculty of Engineering
and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 14 August 2020/Accepted:
30 November 2020
ABSTRACT
Flood frequency analysis should
consider small and frequent floods. Despite the complexities in partial
duration series implementation, it can give a better flood estimation in a way
that it does not exclude any significant high flow events, even if it is not
the highest event of the year. This study employs the streamflow data recorded
at Kajang station, Sungai Langat, Malaysia over a 36-year period spanning from 1978 to
2013. The paper attempts to conduct flood frequency analysis using two
approaches, annual maximum and partial duration series. The optimal threshold
value is selected to be 48.7 m3/s, where the dispersion index
stabilizes at around 1, DI = 1
. The
results have shown that generalized extreme value (GEV) distribution describes
the annual maximum data while the lognormal
(LN3) and generalized Pareto (GPA) distribution is chosen as the best fit
distribution at Kajang station for a partial duration
series. There is a slight difference between estimated streamflow magnitude
when using GPA and LN3 for selected return periods, while a considerable
difference was observed when using annual maximum at a higher return period. As
a conclusion, PDS gives more relevant magnitude estimation rather than AMS.
Flood frequency plays an important role in understanding the nature and
magnitude of high flow, which in turn can assist relevant agencies in the
design of hydrological structures and reduce flood impacts.
Keywords: Flood
frequency analysis; generalized extreme value; generalized Pareto; Sungai
Langat; three-parameter lognormal
ABSTRAK
Analisis kekerapan banjir harus mempertimbangkan kejadian banjir dengan magnitud kecil dan kerap. Walaupun terdapat kerumitan dalam pelaksanaan data siri separa, ia memiliki kemampuan untuk memberikan anggaran banjir yang lebih baik, dengan tidak mengecualikan kejadian aliran tinggi yang signifikan, walaupun ia bukan peristiwa tertinggi tahun ini. Kajian ini menggunakan data aliran yang direkodkan di stesen Kajang, Sungai Langat,
Malaysia dalam jangka masa
36 tahun yang merangkumi tahun 1978 hingga 2013. Objektif utama kajian ini adalah menjalankan analisis kekerapan banjir menggunakan dua pendekatan iaitu data tahunan maksimum dan data siri separa. Nilai ambang optimum dipilih menjadi 48.7 m3/s dengan indeks penyebaran stabil pada sekitar 1, DI = 1. Taburan nilai ekstrim teritlak (GEV) menerangkan data maksimum tahunan sementara taburan lognormal dan
Pareto teritlak dipilih sebagai taburan yang paling sesuai di stesen Kajang untuk data siri separa. Terdapat sedikit perbezaan antara magnitud aliran dengan menggunakan taburan Pareto teritlak dan
lognormal untuk tempoh pulangan yang dipilih. Manakala, perbezaan yang cukup besar dapat dilihat apabila menggunakan data tahunan maksima terutamanya pada tempoh pulangan yang lebih tinggi. Secara kesimpulan, PDS memberikan anggaran magnitud yang lebih relevan berbanding AMS. Kekerapan banjir memainkan peranan penting dalam memahami sifat dan besarnya aliran tinggi, yang seterusnya dapat membantu agensi yang berkaitan dalam merancang struktur hidrologi dan mengurangkan kesan kejadian banjir.
Kata kunci: Analisis kekerapan banjir; lognormal tiga-parameter; nilai ekstrim teritlak; Pareto teritlak; Sungai Langat
REFERENCES
Agilan, V. & Umamahesh, N.V.
2017. Non-stationary rainfall intensity-duration-frequency relationship: A
comparison between annual maximum and partial duration series. Water
Resources Management 31(6): 1825-1841.
Alahmadi, F.S., Abd Rahman, N. & Abdulrazzak, M. 2014. Evaluation of the best fit
distribution for partial duration series of daily rainfall in Madinah, Western
Saudi Arabia. Proceedings of the International Association of Hydrological
Sciences 364. Göttingen: Copernicus Publications. pp. 159-163.
Anderson,
T.W. & Darling, D.A. 1954. A test of goodness of fit. Journal of the
American Statistical Association 49(268): 765-769.
Beguería, S. 2005. Uncertainties in partial
duration series modelling of extremes related to the choice of the threshold
value. Journal of Hydrology 303(1-4): 215-230.
Bezak, N., Brilly, M. & Šraj, M. 2014. Comparison between the peaks-over-threshold
method and the annual maximum method for flood frequency analysis. Hydrological
Sciences Journal 59(5): 959-977.
Bílková, D. 2014. Alternative tools of statistical
analysis: L-moments and TL-moments of probability distributions. Pure and
Applied Mathematics Journal 3(2): 14-25.
Chang,
K.B., Lai, S.H. & Othman, F. 2016. Comparison of annual maximum and partial
duration series for derivation of rainfall intensity-duration-frequency
relationships in Peninsular Malaysia. Journal of Hydrologic Engineering 21(1): 1-11.
Cheong,
R.Y. & Gabda, D. 2018. Frequency analysis of
annual maximum river flow by generalized extreme value distribution with
Bayesian MCMC. Journal of Computer Science & Computational Mathematics 8(4): 77-81.
Claps,
P. & Laio, F. 2003. Can continuous streamflow
data support flood frequency analysis? An alternative to the partial duration
series approach. Water Resources Research 39(8): 1-11.
Cunnane,
C. 1979. A note on the Poisson assumption in partial duration series models. Water
Resources Research 15(2): 489-494.
Department
of Statistics Malaysia. 2019. Poket stats negeri –
Selangor. https://www.dosm.gov.my/v1/index.php?r=column/cone&menu_id=dFc3aExhVktPbUpoZys1dWoyUWFPQT09.
Engeland, K., Wilson, D., Borsányi, P., Roald, L. & Holmqvist,
E. 2018. Use of historical data in flood frequency analysis: A case study for
four catchments in Norway. Hydrology Research 49(2): 466-486.
Franchini, M., Galeati,
G. & Lolli, M. 2005. Analytical derivation of the flood frequency curve
through partial duration series analysis and a probabilistic representation of
the runoff coefficient. Journal of Hydrology 303(1-4): 1-15.
Gado, T. & Nguyen, V.T.V. 2016. Regional estimation of
floods for ungauged sites using partial duration series and scaling approach. Journal
of Hydrologic Engineering 21(12): 1-12.
Garba, H., Ismail, A. & Tsoho,
U. 2013. Fitting probability distribution functions to discharge variability of
Kaduna River. International Journal of Modern Engineering Research 3(5):
2848-2852.
Gharib,
A., Davies, E.G.R., Goss, G.G. & Faramarzi, M.
2017. Assessment of the combined effects of threshold selection and parameter
estimation of generalized Pareto distribution with applications to flood
frequency analysis. Water 9(9): 692-708.
Ghasemi, A. & Zahediasl,
S. 2012. Normality tests for statistical analysis: A guide for
non-statisticians. International Journal of Endocrinology and Metabolism 10(2): 486-489.
Jiang,
S. & Kang, L. 2019. Flood frequency analysis for annual maximum streamflow
using a non-stationary GEV model. E3S Web of Conferences: International
Symposium on Architecture Research Frontiers and Ecological Environment 79,
03022. United Kingdom: EDP Sciences. pp. 1-5.
Karim,
F., Hasan, M. & Marvanek, S. 2017. Evaluating
annual maximum and partial duration series for estimating frequency of small
magnitude floods. Water 9(7): 481-497.
Keast, D. & Ellison, J. 2013. Magnitude frequency
analysis of small floods using the annual and partial series. Water 5(4): 1816-1829.
Khan,
S.A., Hussain, I., Hussain, T., Faisal, F., Muhammad, Y.S. & Shoukry, A.M.
2017. Regional frequency analysis of extremes precipitation using L-moments and
partial L-moments. Advances in Meteorology 2017: Article ID. 6954902.
Leščešen, I. & Dolinaj,
D. 2019. Regional flood frequency analysis of the Pannonian Basin. Water 11(193): 1-15.
Madsen,
H., Rasmussen, P.F. & Rosbjerg, D. 1997.
Comparison of annual maximum series and partial duration series methods for
modelling extreme hydrologic events. Water Resources Research 33(4):
747-757.
Makkonen, L. 2006. Plotting positions in
extreme value analysis. Journal of Applied Meteorology and Climatology 45(2): 334-340.
Malamud,
B.D. & Turcotte, D.L. 2006. The applicability of power-law frequency
statistics to floods. Journal of Hydrology 322(1-4): 168-180.
Mierlus-Mazilu, I. 2010. On generalized Pareto
distributions. Romanian Journal of Economic Forecasting 13(1): 107-117.
Özonur, D., Gökpinar, E., Gökpinar, F., Bayrak, H. & Gül, H.H. 2013. Comparison of the goodness of fit tests for
the geometric distribution. Gazi University Journal of Science 26(3):
369-375.
Pettitt,
A.N. & Stephens, M.A. 1977. The Kolmogorov-Smirnov goodness-of-fit
statistic with discrete and grouped data. Technometrics 19(2): 205-210.
Pham,
H.X., Shamseldin, A.Y. & Melville, B.W. 2014.
Statistical properties of partial duration series and its implication on
regional frequency analysis. Journal of Hydrologic Engineering 19(7):
1471-1480.
Scarrott, C. & Macdonald, A. 2012. A
review of extreme value threshold estimation and uncertainty quantification. Revstat Statistical Journal 10(1): 33-60.
Schlögl, M. & Laaha,
G. 2017. Extreme weather exposure identification for road networks - A
comparative assessment of statistical methods. Natural Hazards and Earth
System Sciences 17(4): 515-531.
Singla,
N., Jain, K. & Sharma, S.K. 2016. Goodness of fit tests and power
comparisons for weighted gamma distribution. Revstat Statistical Journal 14(1): 29-48.
Srinivasa
Murthy, D., Aruna Jyothy,
S. & Mallikarjuna, P. 2017. Probability
distributions of annual maximum daily streamflows using L-moments - A case study. International Journal of Civil Engineering
and Technology 8(6): 290-302.
Syed
Hussain, T.P.R. & Ismail, H. 2013. Flood frequency analysis of Kelantan
River basin, Malaysia. World Applied Sciences Journal 28(12): 1989-1995.
Tallaksen, L. & Hewa,
G. 2008. Extreme value analysis. In Manual on Low-flow Estimation and
Prediction, edited by Gustard, A. & Demuth,
S. Geneva, Switzerland: World Meteorological Organization. pp. 57-70.
Tekolla, A.W. 2010. Rainfall and flood
frequency analysis in Pahang River basin, Malaysia. Master of Science Thesis.
Lund University, Lund, Sweden (Unpublished).
Ummi Nadiah, A., Shabri, A. & Zakaria, Z.A. 2013. An analysis of annual
maximum streamflows in Terengganu, Malaysia using
TL-moments approach. Theoretical and Applied Climatology 111(3-4):
649-663.
van Westen, C.J. & Jetten,
V. 2015. Magnitude-frequency analysis. In Caribbean Handbook on Risk
Information Management, edited by van Westen,
C.J., Jetten, V., Sliuzas,
R., Brussel, M., Alkema, D., Van den Bout, B. & Hazarika, M. Washington
D.C., United States: World Bank.
*Corresponding
author; email: fir@ukm.edu.my
|