Sains Malaysiana 50(9)(2021): 2499-2510

http://doi.org/10.17576/jsm-2021-5009-01

 

Influence of Various Gauge Lengths, Root Spacing and Root Numbers on Root Tensile Properties of Herbaceous Plants

(Pengaruh Pelbagai Panjang Tolok, Jarak Akar dan Nombor Akar pada Sifat Tegangan Akar Tumbuhan Herba)
          
           

CHAOBO ZHANG*, XIAOYU MA, YATING LIU & JING JIANG

 

College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

 

Received: 5 April 2020/Accepted: 2 January 2021

 

Abstract

The mechanical properties of root system play an important role in soil reinforcement by plants. Root tensile properties are affected by many factors. It is necessary to explore the mechanical properties of root system and the influencing factors. In this study, tensile tests were conducted on roots of Kochia scoparia (L.) Schrad and Artemisia sacrorum Ledeb to study root tensile properties, including maximum tensile force, tensile strength and elastic modulus under the three factors, gauge length (50, 100, 150, and 200 mm), root spacing (0, 1, and 2 cm) and root number (single root, double roots, and triple roots). The results showed that the maximum tensile force, tensile strength, and elastic modulus of the roots decreased with increasing gauge length in power functions. Under 100 mm gauge length, the maximum tensile force, tensile strength and elastic modulus decreased with increasing root spacing, but the effect of root spacing considered in this study on the maximum tensile force and tensile strength was not significant. Besides, with increasing root number, the maximum tensile force increased, tensile strength, and elastic modulus decreased. These findings stretched our understanding of the relationship between gauge length, root spacing and root number on root tensile characteristics, and provided the necessary data basis for root tensile properties and soil reinforcement by plants.

 

Keywords: Gauge length; root mechanical properties; root number; root reinforcement; root spacing

 

Abstrak

Sifat mekanik sistem akar memainkan peranan penting dalam pengukuhan tanah oleh tanaman. Sifat tegangan akar dipengaruhi oleh banyak faktor. Adalah perlu untuk mengkaji sifat mekanik sistem akar dan faktor yang mempengaruhinya. Dalam kajian ini, ujian tegangan dilakukan pada akar Kochia scoparia (L.) Schrad dan Artemisia sacrorum Ledeb untuk mengkaji sifat tegangan akar, termasuk daya tegangan maksimum, kekuatan tegangan dan modulus elastik di bawah tiga faktor, panjang tolok (50, 100, 150 dan 200 mm), jarak akar (0, 1 dan 2 cm) dan nombor akar (akar tunggal, akar berganda dan akar tiga). Hasil kajian menunjukkan bahawa daya tegangan maksimum, kekuatan tegangan dan modulus elastik akar menurun dengan peningkatan panjang pengukur dalam fungsi daya. Di bawah panjang tolok 100 mm, daya tarik maksimum, kekuatan tegangan dan modulus elastik menurun dengan peningkatan jarak akar, tetapi pengaruh jarak akar yang dipertimbangkan dalam kajian ini terhadap daya tegangan maksimum dan kekuatan tegangan tidak signifikan. Selain itu, dengan bertambahnya bilangan akar, daya tarik maksimum meningkat, kekuatan tegangan dan modulus elastik menurun. Penemuan ini meluaskan pemahaman kami tentang hubungan antara panjang tolok, jarak jarak dan nombor akar pada ciri tegangan akar dan menyediakan asas data yang diperlukan untuk sifat tegangan akar dan pengukuhan tanah oleh tanaman.

 

Kata kunci: Jarak akar; nombor akar; panjang tolok; peneguhan akar; sifat mekanikal akar

 

References

Abdi, E. 2018. Root tensile force and resistance of several tree and shrub species of Hyrcanian Forest, Iran. Croatian Journal of Forest Engineering 39(2): 255-270.

Bischetti, G.B., Chiaradia, E.A., D’Agostino, V. & Simonato, T. 2010. Quantifying the effect of brush layering on slope stability. Ecological Engineering 36(3): 258-264.

Boldrin, D., Leung, A.K. & Bengough, A.G. 2018. Effects of root dehydration on biomechanical properties of woody roots of Ulex europaeus. Plant and Soil 431(1-2): 347-369.

Cohen, D. & Schwarz, M. 2017. Tree-root control of shallow landslides. Earth Surface Dynamics 5(3): 451-477.

De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J. & Muys, B. 2008. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant and Soil 305(1-2): 207-226.

Fan, C.C. & Su, C.F. 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological Engineering 33(2): 157-166.

Feng, B., Zong, Q.L., Cai, H.B., Chen, Z.K. & Wang, J.X. 2019. Calculation of increased soil shear strength from desert plant roots. Arabian Journal of Geosciences 12(16): 12.

Ghestem, M., Veylon, G., Bernard, A., Vanel, Q. & Stokes, A. 2014. Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil 377(1-2): 43-61.

Giadrossich, F., Schwarz, M., Cohen, D., Preti, F. & Or, D. 2012. Mechanical interactions between neighbouring roots during pullout tests. Plant and Soil 367(1-2): 391-406.

Hales, T.C. & Miniat, C.F. 2017. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. Earth Surface Processes and Landforms 42(5): 803-813.

Hollis, L.O. & Turner, R.E. 2019. The tensile root strength of spartina patens varies with soil texture and atrazine concentration. Estuaries and Coasts 42(6): 1430-1439.

Hubble, T.C.T., Airey, D.W., Sealey, H.K., De Carli, E.V. & Clarke, S.L. 2013. A little cohesion goes a long way: Estimating appropriate values of additional root cohesion for evaluating slope stability in the Eastern-Australian highlands. Ecological Engineering 61: 621-632.

Hudek, C., Sturrock, C.J., Atkinson, B.S., Stanchi, S. & Freppaz, M. 2017. Root morphology and biomechanical characteristics of high altitude alpine plant species and their potential application in soil stabilization. Ecological Engineering 109: 228-239.

Ji, X., Cong, X., Dai, X., Zhang, A. & Chen, L. 2018. Studying the mechanical properties of the soil-root interface using the pullout test method. Journal of Mountain Science 15(4): 882-893.

Jiang, M.J., Zhu, Y.G. & Xi, B.L. 2017. Investigation into the soil-root composites using distinct element method. In Proceedings of the 7th International Conference on Discrete Element Methods, edited by Li, X., Feng, Y. & Mustoe, G. Singapore: Springer-Verlag Singapore Pte. Ltd. 188: 1075-1083.

Jones, K. & Hanna, E. 2004. Design and implementation of an ecological engineering approach to coastal restoration at Loyola Beach, Kleberg County, Texas. Ecological Engineering 22(4-5): 249-261.

Liu, S., Li, X., Zhu, X. & Song, F. 2018. Tensile properties of seminal and nodal roots and their relationship with the root diameter and planting density of maize (Zea mays). Crop & Pasture Science 69(7): 717-723.

Loades, K.W., Bengough, A.G., Bransby, M.F. & Hallett, P.D. 2010. Planting density influence on fibrous root reinforcement of soils. Ecological Engineering 36(3): 276-284.

Mahannopkul, K. & Jotisankasa, A. 2019. Influence of root suction on tensile strength of Chrysopogon zizanioides roots and its implication on bio-slope stabilization. Journal of Mountain Science 16(2): 275-284.

Moreton, R. 1968. The effect of gauge length on the tensile strength of R.A.E. carbon fibres Fibre Science and Technology 1(4): 273-284.

Ng, C.W.W., Ni, J.J., Leung, A.K., Zhou, C. & Wang, Z.J. 2016. Effects of planting density on tree growth and induced soil suction. Geotechnique 66(9): 711-724.

Ni, J.J., Leung, A.K. & Ng, C.W.W. 2019. Influences of plant spacing on root tensile strength of Schefflera arboricola and soil shear strength. Landscape and Ecological Engineering 15(2): 223-230.

Ni, J.J., Leung, A.K., Ng, C.W.W. & So, P.S. 2017. Investigation of plant growth and transpiration-induced matric suction under mixed grass-tree conditions. Canadian Geotechnical Journal 54(4): 561-573.

Pallewattha, M., Indraratna, B., Heitor, A. & Rujikiatkamjorn, C. 2019. Shear strength of a vegetated soil incorporating both root reinforcement and suction. Transportation Geotechnics 18: 72-82.

Pollen, N. 2007. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69(3): 197-205.

Saifuddin, M., Osman, N., Rahman, M.M. & Boyce, A.N. 2015. Soil reinforcement capability of two legume species from plant morphological traits and mechanical properties. Current Science 108(7): 1340-1347.

Sanchez-Castillo, L., Kubota, T., Cantu-Silva, I., Yanez-Diaz, M., Hasnawir & Pequeno-Ledezma, M. 2017. Comparisons of the root mechanical properties of three native Mexican tree species for soil bioengineering practices. Botanical Sciences 95(2): 259-269.

Stokes, A., Douglas, G.B., Fourcaud, T., Giadrossich, F., Gillies, C., Hubble, T., Kim, J.H., Loades, K.W., Mao, Z., McIvor, I.R., Mickovski, S.B., Mitchell, S., Osman, N., Phillips, C., Poesen, J., Polster, D., Preti, F., Raymond, P., Rey, F., Schwarz, M. & Walker, L.R. 2014. Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant and Soil 377(1-2): 1-23.

Tosi, M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the northern Apennines (Italy). Geomorphology 87(4): 268-283.

Waldron, L. 1977. The shear resistance of root‐permeated homogeneous and stratified soil. Soil Science Society of America Journal 41(5): 843-849.

Wang, P., Chen, L. & Ji, X. 2012. Analysis of stress-strain curves for four common arbor root systems. Bulletin of Soil and Water Conservation 32(3): 17-22.

Wu, T.H., McKinnell III., W.P. & Swanston, D.N. 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal 16(1): 19-33.

Yang, Y., Chen, L. & Li, N. 2016. How gauge length and loading rate influence the root tensile strength of Betula platyphylla. Journal of Soil and Water Conservation 71(6): 460-466.

Yao, X., Liu, J., Wang, L., Liu, A. & Xing, H. 2009. Study on the plant roots to improve shear characteristics in coal mining subsidence area. 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing. pp. 1-5.

Zavala-Gonzalez, R., Cantu-Silvan, I., Sanchez-Castillo, L., Gonzalez-Rodriguez, H., Kubota, T. & Hasnawir. 2019. Ten native tree species for potential use in soil bioengineering in northeastern mexico. Botanical Sciences 97(3): 291-300.

Zhang, C., Chen, L., Jiang, J. & Zhou, S. 2012. Effects of gauge length and strain rate on the tensile strength of tree roots. Trees-Structure and Function 26(5): 1577-1584.

Zhang, C., Zhou, X., Jiang, J., Wei, Y., Ma, J. & Hallett, P.D. 2019. Root moisture content influence on root tensile tests of herbaceous plants. Catena 172: 140-147.

Zhang, X. & Hu, X. 2014. Mechanical multiple root effects of Caragana korshinskii roots in frigid and arid-semiarid environment. Hubei Agricultural Sciences 53(19): 4632-4637.

 

*Corresponding author; email: zhangchaobo@tyut.edu.cn