Sains Malaysiana 50(9)(2021): 2603-2614

http://doi.org/10.17576/jsm-2021-5009-09

 

Synthesis, Molecular Docking and Tyrosinase Inhibitory Activity of the Decorated Methoxy Sulfonamide Chalcones:  in vitro Inhibitory Effects and the Possible Binding Mode

(Sintesis, Penyambungan Molekul dan Aktiviti Perencatan Tirosinase dari Metoksi Sulfonamida Kalkon: Kesan Perencatan in vitro dan Mod Pengikatan Mungkin)

 

THAWANRAT KOBKEATTHAWIN1, SUCHADA CHANTRAPROMMA1*, THITIPONE SUWUNWONG2, LYDIA RHYMAN3,4, YEE SIEW CHOONG5 & PONNADURAI RAMASAMI3,4

 

1Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

 

2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand  

 

3Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius

 

4Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg
Doornfontein Campus, Johannesburg 2028, South Africa

 

5Computational Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM 11800, Malaysia 

 

Received: 17 May 2020/Accepted: 13 January 2021

 

ABSTRACT

In this study, a series of sulfonamide chalcones derivatives was synthesized and its chemical structures were confirmed by spectral characteristics. The synthesized compounds were evaluated for their tyrosinase inhibitory activities along with molecular docking study. The tyrosinase inhibitory results indicated that compounds 5b, 5c, 5f, 5g and 5h displayed the significant tyrosinase inhibitory activity and comparable to the standard drug (kojic acid). Compound 5c exhibits the most potent tyrosinase inhibition among the synthesized compounds with IC50 = 0.43±0.07 mM, L-DOPA as the substrate, and better than that of the standard kojic acid (IC50 = 0.60±0.20 mM). Molecular docking studies showed that the binding mode of some compounds is in the tyrosinase binding pocket surrounding the copper in the active site. The correlation between the docking results with IC50 values showed that the binding mode prediction of the test compounds would also be convincing. This comprehensive study allows for a possible mechanism for the antityrosinase activity of the sulfonamide chalcones. These sulfonamide chalcones bind to copper atoms of tyrosinase which responsible for the catalytic activity of tyrosinase. These compounds may be used as a lead for rational drug designing for the multi-functional tyrosinase inhibitor.

 

Keywords: Binding mode; molecular docking; sulfonamide chalcones; tyrosinase inhibitor

 

ABSTRAK

Dalam kajian ini, satu siri terbitan sulfonamida kalkon disintesis dan struktur kimianya disahkan oleh pencirian spektrum. Sebatian yang disintesis dinilai untuk aktiviti penghambatan tirosinasenya bersama dengan kajian mengedok molekul. Hasil perencatan tirosinase menunjukkan bahawa sebatian 5b, 5c, 5f, 5g dan 5h menunjukkan aktiviti penghambatan tirosinase yang signifikan dan setanding dengan ubat piawai (asid kojik). Sebatian 5c menunjukkan perencatan tirosinase yang paling kuat antara sebatian yang disintesis dengan IC50 = 0.43 ± 0.07 mM, L-DOPA sebagai substrat dan lebih baik daripada asid kojik piawai (IC50 = 0.60 ± 0.20 mM). Kajian mengedok molekul menunjukkan bahawa kaedah pengikatan sebilangan sebatian terdapat di dalam poket pengikat tirosinase yang mengelilingi tembaga di tapak aktif. Hubungan antara hasil dok dengan nilai IC50 menunjukkan bahawa ramalan mod pengikat sebatian ujian juga akan meyakinkan. Kajian komprehensif ini memungkinkan adanya mekanisme untuk aktiviti anti-tirosinase sulfonamida kalkon. Kalkon sulfonamida ini mengikat atom tembaga tirosinase yang bertanggungjawab untuk aktiviti pemangkin tirosinase. Sebatian ini boleh digunakan sebagai petunjuk untuk mereka bentuk ubat yang rasional untuk perencat tirosinase pelbagai fungsi.

 

Kata kunci: Dok molekul; mod pengikat; perencat tirosinase; sulfonamida kalkon

 

REFERENCES

Akhtar, M.N., Sakeh, N.M., Zareen, S., Gul, S., Lo, K.M., Ul-Haq, Z., Shah, S.A.A. & Ahmad, S. 2015. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship. Journal of Molecular Structure 1085: 97-103.

Ali, T.E. & Abdel-Rahman, R.M. 2014. Synthesis and antioxidant activities of some novel fluorinated spiro [oxindole-thiazolidine] fused with sulfur and phosphorus heterocycles. Journal of Sulfur Chemistry 35(4): 399-411.

Ashraf, A., Ejaz, S.A., Rahman, S.U., Siddiqui, W.A., Arshad, M.N., Lecka, J., Sévigny, J., Zayed, M.E.M., Asiri, A.M., Iqbal, J. & Hartinger, C.G. 2018. Hybrid compounds from chalcone and 1, 2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes. European Journal of Medicinal Chemistry 159: 282-291.

Battin, E.E. & Brumaghim, J.L. 2009. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochemistry and Biophysics 55(1): 1-23.

Bharatham, K., Bharatham, N., Park, K.H. & Lee, K.W. 2008. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors. Journal of Molecular Graphics and Modelling 26(8): 1202-1212.

Bonakdar, A.P.S., Vafaei, F., Farokhpour, M., Esfahani, M.H.N. & Massah, A.R. 2017. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iranian Journal of Pharmaceutical Research 16(2): 565.                                                                            

Cai, P., Xiong, Y., Yao, Y., Chen, W. & Dong, X. 2019. Synthesis, screening and biological activity of potent thiosemicarbazone compounds as a tyrosinase inhibitor. New Journal of Chemistry 43(35): 14102-14111.

Carcelli, M., Rogolino, D., Bartoli, J., Pala, N., Compari, C., Ronda, N., Bacciottini, F., Incerti, M. & Fisicaro, E. 2020. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chemistry 303: 125310.

Chang, T.S. 2009. An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences 10(6): 2440-2475.

Domínguez, J.N., León, C., Rodrigues, J., de Domínguez, N.G., Gut, J. & Rosenthal, P.J. 2005. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Il Farmaco 60(4): 307-311.

Espín, J.C. & Wichers, H.J. 1999. Slow-binding inhibition of mushroom (Agaricus bisporus) tyrosinase isoforms by tropolone. Journal of Agricultural and Food Chemistry 47(7): 2638-2644.

Gantla, C.R., Suresh, Y., Harikrishana, S. & Shrivastava, S.P. 2009. Synthesis and antibacterial activity of some substituted isoxazolines and isothiazolines. Oriental Journal of Chemistry 25(1): 153-157.

Ismaya, W.T., Rozeboom, H.J., Weijn, A., Mes, J.J., Fusetti, F., Wichers, H.J. & Dijkstra, B.W. 2011. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50(24): 5477-5486.

Javle, M. & Curtin, N.J. 2011. The potential for poly (ADP-ribose) polymerase inhibitors in cancer therapy. Therapeutic Advances in Medical Oncology 3(6): 257-267.

Kahn, V. & Andrawis, A. 1985. Inhibition of mushroom tyrosinase by tropolone. Phytochemistry 24(5): 905-908.

Kang, J.E., Cho, J.K., Curtis-Long, M.J., Ryu, H.W., Kim, J.H., Kim, H.J., Yuk, H.J., Kim, D.W. & Park, K.H. 2013. Inhibitory evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules 18(1): 140-153.

Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. 2005. Chalcones as potent tyrosinase inhibitors: The importance of a 2, 4-substituted resorcinol moiety. Bioorganic & Medicinal Chemistry 13(2): 433-441.        

Kim, J.H., Jang, H.J., Cho, W.Y., Yeon, S.J. & Lee, C.H. 2020. In vitro antioxidant actions of sulfur-containing amino acids. Arabian Journal of Chemistry 13(1): 1678-1684.

Lee, B., Moon, K.M., Kim, S.J., Kim, S.H., Kim, D.H., An, H.J., Jeong, J.W., Kim, Y.R., Son, S., Kim, M.J. & Chung, K.W. 2016. (Z)-5-(2, 4-dihydroxybenzylidene) thiazolidine-2, 4-dione prevents UVB-induced melanogenesis and wrinkle formation through suppressing oxidative stress in HRM-2 hairless mice. Oxidative Medicine and Cellular Longevity 2016: 2761463.

Liu, J., Chen, C., Wu, F. & Zhao, L. 2013. Microwaveassisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chemical Biology & Drug Design 82(1): 39-47.

Liu, J., Wu, F., Chen, L., Hu, J., Zhao, L., Chen, C. & Peng, L. 2011. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 21(8): 2376-2379.

Loizzo, M.R., Tundis, R. & Menichini, F. 2012. Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety 11(4): 378-398.

Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. & Olson, A.J. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14): 1639-1662.

Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. 2004. Chalcones as potent tyrosinase inhibitors: The effect of hydroxyl positions and numbers. Phytochemistry 65(10): 1389-1395.

Nithitanakool, S., Pithayanukul, P., Bavovada, R. & Saparpakorn, P. 2009. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules 14(1): 257-265.

Niu, C., Yin, L., Nie, L.F., Dou, J., Zhao, J.Y., Li, G. & Aisa, H.A. 2016. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorganic & Medicinal Chemistry 24(21): 5440-5448.

Panzella, L. & Napolitano, A. 2019. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics 6(4): 57.

Park, K.H., Kim, J.H., Seo, W.D., Ryu, Y.B., Ryu, H.W., Lee, W.S., Gal, S.W. & Gyeongsang National University Industry-Academic Cooperation Fdn. 2010. Chalcone derivatives, pharmaceutically acceptable salt, method for preparation and uses thereof. U.S. Patent 7,851,654.

Parvez, S., Kang, M., Chung, H.S. & Bae, H. 2007. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 21(9): 805-816.

Radhakrishnan, S., Shimmon, R., Conn, C. & Baker, A. 2015a. Inhibitory kinetics of novel 2,3-dihydro-1H-inden-1-one chalcone-like derivatives on mushroom tyrosinase. Bioorganic & Medicinal Chemistry Letters 25(23): 5495-5499.

Radhakrishnan, S., Shimmon, R., Conn, C. & Baker, A. 2015b. Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells. Bioorganic Chemistry 62: 117-123.     

Radhakrishnan, S., Shimmon, R., Conn, C. & Baker, A. 2015c. Integrated kinetic studies and computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 25(19): 4085-4091.

Ranjbar, S., Akbari, A., Edraki, N., Khoshneviszadeh, M., Hemmatian, H., Firuzi, O. & Khoshneviszadeh, M. 2018. 6-Methoxy-3,4-dihydronaphthalenone chalcone-like derivatives as potent tyrosinase inhibitors and radical scavengers. Letters in Drug Design & Discovery 15(11): 1170-1179.

Rescigno, A., Bruyneel, F., Padiglia, A., Sollai, F., Salis, A., Marchand-Brynaert, J. & Sanjust, E. 2011. Structure - Activity relationships of various amino-hydroxy-benzenesulfonic acids and sulfonamides as tyrosinase substrates. Biochimica et Biophysica Acta 1810(8): 799-807.

Seo, S.Y., Sharma, V.K. & Sharma, N. 2003. Mushroom tyrosinase: Recent prospects. Journal of Agricultural and Food Chemistry 51(10): 2837-2853.

Seo, W.D., Ryu, Y.B., Curtis-Long, M.J., Lee, C.W., Ryu, H.W., Jang, K.C. & Park, K.H. 2010. Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. European Journal of Medicinal Chemistry 45(5): 2010-2017.

Suwunwong, T., Kobkeatthawin, T., Chanawanno, K., Saewan, N., Wisitsak, P. & Chantrapromma, S. 2012. Tyrosinase inhibitory activity of pyrazole derivatives. Advanced Materials Research 506: 194-197.

Yamada, M., Nakamura, K., Watabe, T., Ohno, O., Kawagoshi, M., Maru, N., Uotsu, N., Chiba, T., Yamaguchi, K. & Uemura, D. 2011. Melanin biosynthesis inhibitors from tarragon Artemisia dracunculus. Bioscience, Biotechnology, and Biochemistry 75(8): 1628-1630.

Yi, L. & Su, Q. 2013. Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food and Chemical Toxicology 57: 362-370.

 

*Corresponding author; email: suchada.c@psu.ac.th

 

 

           

previous