Sains Malaysiana 50(9)(2021): 2603-2614
http://doi.org/10.17576/jsm-2021-5009-09
Synthesis, Molecular Docking and
Tyrosinase Inhibitory Activity of the Decorated Methoxy Sulfonamide Chalcones: in
vitro Inhibitory Effects and the
Possible Binding Mode
(Sintesis, Penyambungan Molekul dan Aktiviti
Perencatan Tirosinase dari Metoksi Sulfonamida Kalkon: Kesan Perencatan in
vitro dan Mod Pengikatan Mungkin)
THAWANRAT
KOBKEATTHAWIN1, SUCHADA CHANTRAPROMMA1*, THITIPONE
SUWUNWONG2, LYDIA RHYMAN3,4, YEE SIEW CHOONG5 &
PONNADURAI RAMASAMI3,4
1Division of Physical Science, Faculty of
Science, Prince of Songkla University, Songkhla
90110, Thailand
2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
3Computational Chemistry Group, Department
of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
4Centre for Natural Product Research,
Department of Chemical Sciences,
University of Johannesburg
Doornfontein Campus, Johannesburg 2028, South Africa
5Computational Institute for Research in
Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM 11800, Malaysia
Received:
17 May 2020/Accepted: 13 January
2021
ABSTRACT
In this
study, a series of sulfonamide chalcones derivatives was synthesized and its
chemical structures were confirmed by spectral characteristics. The
synthesized compounds were evaluated for their tyrosinase inhibitory activities
along with molecular docking study. The
tyrosinase inhibitory results indicated that compounds 5b, 5c, 5f, 5g and 5h
displayed the significant tyrosinase inhibitory activity and comparable to the
standard drug (kojic acid). Compound 5c exhibits the most potent tyrosinase
inhibition among the synthesized compounds with IC50 = 0.43±0.07
mM, L-DOPA as the substrate, and better than that of the standard kojic
acid (IC50 = 0.60±0.20
mM). Molecular docking studies showed that the
binding mode of some compounds is in the tyrosinase binding pocket surrounding
the copper in the active site. The
correlation between the docking results with IC50 values showed that
the binding mode prediction of the test compounds would also be convincing. This
comprehensive study allows for a possible mechanism for the antityrosinase
activity of the sulfonamide chalcones. These
sulfonamide chalcones bind to copper atoms of tyrosinase which responsible for the catalytic
activity of tyrosinase. These compounds may be used as a lead for
rational drug designing for the multi-functional tyrosinase inhibitor.
Keywords: Binding mode; molecular docking; sulfonamide chalcones; tyrosinase inhibitor
ABSTRAK
Dalam kajian ini, satu siri terbitan sulfonamida kalkon disintesis dan struktur kimianya disahkan oleh pencirian spektrum. Sebatian yang disintesis dinilai untuk aktiviti penghambatan tirosinasenya bersama dengan kajian mengedok molekul. Hasil perencatan tirosinase menunjukkan bahawa sebatian 5b, 5c, 5f, 5g
dan 5h menunjukkan aktiviti penghambatan tirosinase yang signifikan dan setanding dengan ubat piawai (asid kojik). Sebatian 5c menunjukkan perencatan tirosinase yang paling kuat antara sebatian yang disintesis dengan IC50 = 0.43 ± 0.07 mM, L-DOPA sebagai substrat dan lebih baik daripada asid kojik piawai (IC50 = 0.60 ± 0.20 mM). Kajian mengedok molekul menunjukkan bahawa kaedah pengikatan sebilangan sebatian terdapat di dalam poket pengikat tirosinase yang mengelilingi tembaga di tapak aktif. Hubungan antara hasil dok dengan nilai IC50 menunjukkan bahawa ramalan mod pengikat sebatian ujian juga akan meyakinkan. Kajian komprehensif ini memungkinkan adanya mekanisme untuk aktiviti anti-tirosinase sulfonamida kalkon. Kalkon sulfonamida ini mengikat atom tembaga tirosinase yang bertanggungjawab untuk aktiviti pemangkin tirosinase. Sebatian ini boleh digunakan sebagai petunjuk untuk mereka bentuk ubat yang rasional untuk perencat tirosinase pelbagai fungsi.
Kata kunci: Dok molekul;
mod pengikat; perencat tirosinase; sulfonamida kalkon
REFERENCES
Akhtar, M.N., Sakeh, N.M., Zareen, S., Gul, S., Lo, K.M., Ul-Haq, Z., Shah, S.A.A. & Ahmad, S. 2015. Design and synthesis of
chalcone derivatives as potent tyrosinase inhibitors and their structural
activity relationship. Journal of Molecular Structure 1085: 97-103.
Ali, T.E. & Abdel-Rahman, R.M. 2014. Synthesis
and antioxidant activities of some novel fluorinated spiro [oxindole-thiazolidine] fused
with sulfur and phosphorus heterocycles. Journal of Sulfur Chemistry 35(4): 399-411.
Ashraf, A., Ejaz, S.A., Rahman, S.U., Siddiqui, W.A., Arshad, M.N., Lecka, J., Sévigny, J., Zayed, M.E.M., Asiri, A.M., Iqbal, J. & Hartinger, C.G. 2018. Hybrid compounds
from chalcone and 1, 2-benzothiazine pharmacophores as selective inhibitors
of alkaline phosphatase isozymes. European Journal of Medicinal
Chemistry 159: 282-291.
Battin,
E.E. & Brumaghim,
J.L. 2009. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging,
glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochemistry and Biophysics 55(1): 1-23.
Bharatham, K., Bharatham,
N., Park, K.H. & Lee, K.W. 2008. Binding
mode analyses and pharmacophore model development for sulfonamide chalcone
derivatives, a new class of α-glucosidase inhibitors. Journal
of Molecular Graphics and Modelling 26(8): 1202-1212.
Bonakdar, A.P.S., Vafaei, F., Farokhpour,
M., Esfahani, M.H.N. & Massah, A.R. 2017. Synthesis
and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iranian
Journal of Pharmaceutical Research 16(2): 565.
Cai, P., Xiong, Y., Yao, Y., Chen, W. & Dong, X. 2019. Synthesis, screening and
biological activity of potent thiosemicarbazone compounds as a tyrosinase
inhibitor. New Journal of Chemistry 43(35): 14102-14111.
Carcelli, M., Rogolino, D., Bartoli, J.,
Pala, N., Compari, C., Ronda, N.,
Bacciottini, F., Incerti, M. & Fisicaro, E. 2020. Hydroxyphenyl
thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chemistry 303: 125310.
Chang, T.S. 2009. An updated review
of tyrosinase inhibitors. International Journal of
Molecular Sciences 10(6): 2440-2475.
Domínguez, J.N., León, C., Rodrigues, J., de Domínguez, N.G., Gut, J. &
Rosenthal, P.J. 2005. Synthesis and
antimalarial activity of sulfonamide chalcone derivatives. Il Farmaco 60(4): 307-311.
Espín, J.C. & Wichers, H.J. 1999. Slow-binding inhibition
of mushroom (Agaricus bisporus) tyrosinase isoforms by
tropolone. Journal of Agricultural and Food Chemistry 47(7): 2638-2644.
Gantla, C.R., Suresh, Y., Harikrishana, S. & Shrivastava, S.P. 2009. Synthesis
and antibacterial activity of some substituted isoxazolines and isothiazolines. Oriental Journal of
Chemistry 25(1): 153-157.
Ismaya, W.T., Rozeboom, H.J., Weijn, A., Mes, J.J., Fusetti, F., Wichers, H.J. &
Dijkstra, B.W. 2011. Crystal structure
of Agaricus bisporus mushroom tyrosinase: Identity of the
tetramer subunits and interaction with tropolone. Biochemistry 50(24): 5477-5486.
Javle, M. & Curtin, N.J. 2011. The
potential for poly (ADP-ribose) polymerase
inhibitors in cancer therapy. Therapeutic Advances in
Medical Oncology 3(6): 257-267.
Kahn, V. & Andrawis, A. 1985. Inhibition
of mushroom tyrosinase by tropolone. Phytochemistry 24(5): 905-908.
Kang, J.E., Cho, J.K., Curtis-Long, M.J., Ryu, H.W., Kim, J.H., Kim, H.J., Yuk, H.J., Kim, D.W. &
Park, K.H. 2013. Inhibitory
evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules 18(1): 140-153.
Khatib, S., Nerya,
O., Musa,
R.,
Shmuel, M., Tamir, S. & Vaya, J. 2005. Chalcones as potent tyrosinase inhibitors: The importance of a 2, 4-substituted resorcinol moiety. Bioorganic & Medicinal Chemistry 13(2): 433-441.
Kim, J.H., Jang, H.J.,
Cho, W.Y., Yeon, S.J. & Lee, C.H. 2020. In vitro antioxidant actions of sulfur-containing amino
acids. Arabian Journal of Chemistry 13(1): 1678-1684.
Lee, B., Moon, K.M., Kim, S.J., Kim, S.H., Kim, D.H., An, H.J., Jeong, J.W., Kim, Y.R., Son, S., Kim, M.J. & Chung, K.W. 2016. (Z)-5-(2, 4-dihydroxybenzylidene) thiazolidine-2, 4-dione prevents UVB-induced melanogenesis and
wrinkle formation through suppressing oxidative stress in HRM-2 hairless mice. Oxidative Medicine and
Cellular Longevity 2016: 2761463.
Liu, J., Chen, C., Wu, F. & Zhao, L. 2013. Microwave‐assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chemical Biology & Drug Design 82(1): 39-47.
Liu, J., Wu, F., Chen, L.,
Hu, J., Zhao, L., Chen, C. & Peng, L. 2011. Evaluation of
dihydropyrimidin-(2H)-one analogues and rhodanine
derivatives as tyrosinase inhibitors. Bioorganic & Medicinal
Chemistry Letters 21(8): 2376-2379.
Loizzo, M.R., Tundis, R. & Menichini, F. 2012. Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety 11(4): 378-398.
Morris, G.M., Goodsell,
D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. & Olson, A.J. 1998. Automated
docking using a Lamarckian genetic algorithm and an empirical binding free
energy function. Journal of Computational Chemistry 19(14): 1639-1662.
Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. 2004. Chalcones as potent
tyrosinase inhibitors: The effect of hydroxyl positions and numbers. Phytochemistry 65(10): 1389-1395.
Nithitanakool, S., Pithayanukul, P., Bavovada,
R. & Saparpakorn, P. 2009. Molecular
docking studies and anti-tyrosinase activity of Thai
mango seed kernel extract. Molecules 14(1): 257-265.
Niu, C., Yin, L., Nie, L.F., Dou, J., Zhao, J.Y., Li, G. & Aisa, H.A. 2016. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorganic & Medicinal Chemistry 24(21): 5440-5448.
Panzella, L. & Napolitano, A. 2019. Natural
and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment
of skin hyperpigmentation: Recent advances. Cosmetics 6(4): 57.
Park, K.H., Kim, J.H., Seo, W.D., Ryu, Y.B., Ryu, H.W., Lee, W.S., Gal, S.W. & Gyeongsang National University Industry-Academic
Cooperation Fdn. 2010. Chalcone
derivatives, pharmaceutically acceptable salt, method for preparation and uses
thereof. U.S. Patent 7,851,654.
Parvez, S., Kang, M., Chung, H.S. &
Bae, H. 2007. Naturally occurring tyrosinase
inhibitors: Mechanism and applications in skin health, cosmetics
and agriculture industries. Phytotherapy Research: An
International Journal Devoted to Pharmacological and Toxicological Evaluation
of Natural Product Derivatives 21(9): 805-816.
Radhakrishnan, S., Shimmon, R., Conn, C. &
Baker, A. 2015a. Inhibitory kinetics of novel
2,3-dihydro-1H-inden-1-one chalcone-like derivatives on
mushroom tyrosinase. Bioorganic & Medicinal Chemistry Letters 25(23): 5495-5499.
Radhakrishnan, S., Shimmon,
R., Conn, C. & Baker, A. 2015b. Design, synthesis and biological evaluation of hydroxy substituted amino chalcone compounds for antityrosinase activity in B16 cells. Bioorganic Chemistry 62: 117-123.
Radhakrishnan, S., Shimmon, R., Conn, C. &
Baker, A. 2015c. Integrated kinetic studies and
computational analysis on naphthyl chalcones as mushroom tyrosinase inhibitors. Bioorganic
& Medicinal Chemistry Letters 25(19): 4085-4091.
Ranjbar, S., Akbari,
A., Edraki, N., Khoshneviszadeh,
M., Hemmatian, H., Firuzi,
O. & Khoshneviszadeh, M. 2018. 6-Methoxy-3,4-dihydronaphthalenone chalcone-like derivatives as
potent tyrosinase inhibitors and radical scavengers. Letters in Drug
Design & Discovery 15(11): 1170-1179.
Rescigno, A., Bruyneel, F., Padiglia, A., Sollai, F., Salis, A., Marchand-Brynaert, J. & Sanjust, E. 2011. Structure - Activity relationships of various amino-hydroxy-benzenesulfonic acids and sulfonamides as tyrosinase substrates. Biochimica et Biophysica Acta 1810(8): 799-807.
Seo, S.Y., Sharma, V.K. &
Sharma, N. 2003. Mushroom tyrosinase: Recent
prospects. Journal of Agricultural and Food Chemistry 51(10): 2837-2853.
Seo, W.D., Ryu, Y.B., Curtis-Long, M.J., Lee, C.W., Ryu, H.W., Jang, K.C. &
Park, K.H. 2010. Evaluation of anti-pigmentary effect
of synthetic sulfonylamino chalcone. European
Journal of Medicinal Chemistry 45(5): 2010-2017.
Suwunwong, T., Kobkeatthawin, T., Chanawanno, K., Saewan, N., Wisitsak, P. &
Chantrapromma, S. 2012. Tyrosinase inhibitory activity
of pyrazole derivatives. Advanced Materials Research 506: 194-197.
Yamada, M., Nakamura, K., Watabe,
T., Ohno, O., Kawagoshi,
M., Maru, N., Uotsu,
N., Chiba, T., Yamaguchi, K. & Uemura, D. 2011. Melanin
biosynthesis inhibitors from tarragon Artemisia dracunculus. Bioscience,
Biotechnology, and Biochemistry 75(8): 1628-1630.
Yi, L. &
Su, Q. 2013. Molecular mechanisms for the anti-cancer
effects of diallyl disulfide. Food and Chemical Toxicology 57: 362-370.
*Corresponding author; email: suchada.c@psu.ac.th
|