Sains Malaysiana 50(9)(2021): 2615-2624

http://doi.org/10.17576/jsm-2021-5009-10

 

Influence of Bacterial Inoculation on Growth and Plant Nutrition of Peach Grafted in Different Rootstocks in Calcareous Soil

(Kesan Inokulasi Bakteria ke atas Pertumbuhan dan Nutrisi Tumbuhan Tanaman Pic yang Dicantum pada Stok Akar Berbeza di Tanah Berkapur)

 

MUZAFFER İPEK1*, ŞEYMA ARIKAN1, AHMET EŞITKEN1, LÜTFI PIRLAK1, MESUDE FIGEN DÖNMEZ2 & METIN TURAN3

 

1Department of Horticulture, Faculty of Agriculture, University of Selçuk, 42075 Konya, Turkey

 

2Department of Plant Protection, Faculty of Agriculture, University of Iğdır, 76000 Iğdır, Turkey

 

3Department of Genetics and Bioengineering Plant Protection, Faculty of Engineering, University of Yeditepe, 34755 İstanbul, Turkey

 

Received: 28 March 2020/Accepted: 2 February 2021

 

ABSTRACT

The highly calcareous soil limits plant growth parameters due to inadequate uptake of plant nutrients. Calcareous soil conditions affect plant growth through impaired chlorophyll synthesis, root growth, enzyme synthesis, and nutrient uptake. To overcome the negative effect of calcareous soil, six bacterial strains namely Alcaligenes 637Ca, Agrobacterium A18, Staphylococcus MFDCa1, Staphylococcus MFDCa2, Bacillus M3, and Pantoea FF1 were inoculated in one-year-old plants of peach cultivar ‘Elegant Lady’ grafted onto GF677 and Nemaguard rootstocks. The bacterial treatments were observed to improve plant growth and nutrient content compared to the control. Moreover, the GF677 rootstock was observed to be more tolerant to high calcareous soil conditions than Nemaguard, showing better plant growth and nutrient content. At the Nemaguard rootstocks, the largest leaf area was observed to be upon inoculation with MFDCa2 (29.1 cm2), FF1 (28.8 cm2), and M3 (28.1 cm2), whereas at the GF677 rootstock, the highest leaf area was observed upon inoculation with MFDCa1 (34.7 cm2), FF1 (32.6 cm2), and 637Ca (31.5 cm2). The leaf iron content was higher in bacterial treatments than the control. In the Nemaguard rootstock, the highest iron content was measured in plants inoculated with 637Ca (133.49 mg kg–1) and M3 (127.64 mg kg–1), whereas in the GF677 rootstock, the treatments MFDCa1 (131.51 mg kg–1), 637Ca (131.21 mg kg–1), FF1 (127.72 mg kg–1), and M3 (127.68 mg kg–1) resulted in high iron content. The results indicate that bacterial inoculations have a significant potential to improve plant growth and can be used as biofertilizers for peach grafted onto Nemaguard and GF677 in high calcareous soil conditions.

 

Keywords: Calcareous soil; peach; plant growth-promoting rhizobacteria (PGPR); plant nutrition; Prunus persica L.

 

ABSTRAK

Tanah yang sangat berkapur mengehadkan pertumbuhan tanaman kerana pengambilan nutrien tumbuhan yang tidak mencukupi. Keadaan tanah berkapur mempengaruhi pertumbuhan tanaman dengan menjejaskan sintesis klorofil, pertumbuhan akar, sintesis enzim dan pengambilan nutrien. Untuk mengatasi kesan negatif tanah berkapur, enam strain bakteria iaitu Alcaligenes 637Ca, Agrobacterium A18, Staphylococcus MFDCa1, Staphylococcus MFDCa2, Bacillus M3 dan Pantoea FF1 telah diinokulasi pada tanaman pic kultivar ‘Elegant Lady’ yang berusia satu tahun yang dicantumkan kepada stok akar GF677 dan Nemaguard. Rawatan bakteria didapati telah meningkatkan pertumbuhan tanaman dan kandungan nutrien dibandingkan dengan kawalannya. Tambahan pula, stok akar GF677 dilihat lebih tolerans terhadap keadaan tanah berkapur berbanding Nemaguard, serta menunjukkan pertumbuhan tanaman dan kandungan nutrien yang lebih baik. Pada stok akar Nemaguard, keluasan daun diperhatikan pada inokulasi dengan MFDCa2 (29.1 cm2), FF1 (28.8 cm2) dan M3 (28.1 cm2), sedangkan pada stok akar GF677, keluasan daun terbesar diperhatikan pada inokulasi dengan MFDCa1 (34.7 cm2), FF1 (32.6 cm2) dan 637Ca (31.5 cm2). Kandungan zat besi dalam daun didapati lebih tinggi dalam rawatan bakteria berbanding kawalannya. Pada stok akar Nemaguard, kandungan zat besi tertinggi diukur pada tanaman yang diinokulasi dengan 637Ca (133.49 mg/kg) dan M3 (127.64 mg/kg), manakala pada stok akar GF677, rawatan MFDCa1 (131.51 mg/kg), 637Ca (131.21 mg/kg), FF1 (127.72 mg/kg) dan M3 (127.68 mg/kg) menghasilkan kandungan zat besi yang tinggi. Hasil menunjukkan bahawa inokulasi bakteria berpotensi besar untuk meningkatkan pertumbuhan tanaman dan dapat digunakan sebagai bio-baja untuk tanaman pic yang dicantumkan kepada stok akar Nemaguard dan GF677 dalam keadaan tanah berkapur.

 

Kata kunci: Nutrisi tumbuhan; Prunus persica L.; rhizobakteria penggalak pertumbuhan tanaman (PGPR); tanah berkapur; tanaman pic

 

References

Saunders 1992

Adepetu, J. & Akapa, L. 1977. Root growth and nutrient uptake characteristics of some cowpea varieties. Agronomy Journal 69: 940-943.

Arikan, Ş. & Pirlak, L. 2016. Effects of plant growth promoting rhizobacteria (PGPR) on growth, yield and fruit quality of sour cherry (Prunus cerasus L.). Erwerbs-obstbau 58(4): 221-226.

Arikan, Ş., İpek, M., Eşitken, A., Pirlak, L., Dönmez, M.F. & Turan, M. 2020. Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition 40(13): 2028-2039.

Bremner, J. 1996. Nitrogen-total methods of soil analysis: Part 3. Chemical Methods 5: 1085-1121.

Cakmakci, R., Turan, M., Gulluce, M. & Sahin, F. 2014. Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on Aridisols in Turkey. International Journal of Plant Production 8(2): 163-182.

Cakmakci, R., Dönmez, M.F. & Erdoğan, Ü. 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry 31: 189-199.

Çakmakçı, R., Kantar, F. & Sahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. Journal of Plant Nutrition and Soil Science 164: 527-531.

Egamberdiyeva, D. 2005. Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: Biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science 168: 94-99.

Elkoca, E., Kantar, F. & Sahin, F. 2007. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition 31: 157-171.

Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M. & Gunes, A. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124: 62-66.

Esitken, A., Pirlak, L., Turan, M. & Sahin, F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae 110: 324-327.

Esitken, A., Karlidag, H., Ercisli, S., Turan, M. & Sahin, F. 2003. The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research 54: 377-380.

Eşitken, A., Karlidağ, H., Ercişli, S. & Şahin, F. 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight). Gartenbauwissenschaft 67: 139.

FernandezLopez, J., Lopez-Roca, J. & Almela, L. 1993. Mineral composition of iron chlorotic Citrus limon L. leaves. Journal of Plant Nutrition 16: 1395-1407.

García de Salamone, I.E., Hynes, R.K. & Nelson, L.M. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology 47: 404-411.

Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109-117.

İpek, M. & Eşitken, A. 2017. The actions of PGPR on micronutrient availability in soil and plant under calcareous soil conditions: An evaluation over Fe nutrition. In Plant-Microbe Interactions in Agro-Ecological Perspectives, edited by Singh D., Singh H., Prabha R. Singapore: Springer. https://doi.org/10.1007/978-981-10-6593-4_4.

İpek, M., Pirlak, L., Esitken, A., Figen, D.M., Turan, M. & Sahin, F. 2014. Plant growth-promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. Journal of Plant Nutrition 37(7): 990-1001.

Karakurt, H. & Aslantas, R. 2010. Effects of some plant growth promoting rhizobacteria (PGPR) strains on plant growth and leaf nutrient content of apple. Journal of Fruit and Ornamental Plant Research 18: 101-110.

Karakurt, H., Kotan, R., Dadaşoğlu, F., Aslantaş, R. & Şahin, F. 2011. Effects of plant growth promoting rhizobacteria on fruit set, pomological and chemical characteristics, color values, and vegetative growth of sour cherry (Prunus cerasus cv. Kütahya). Turkish Journal of Biology 35: 283-291.

Karlidag, H., Esitken, A., Turan, M. & Sahin, F. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae 114: 16-20.

Kaymak, H.Ç., Güvenç, İ., Yarali, F. & Dönmez, M.F. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture and Forestry 33: 173-179.

Kaymak, H., Yarali, F., Guvenc, I. & Donmez, M.F. 2008. The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. African Journal of Biotechnology 7(24): 4479-4483.

Larbi, A., Abadía, A., Abadía, J. & Morales, F. 2006. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research 89: 113-126.

Loeppert, R. 1986. Reactions of iron and carbonates in calcareous soils. Journal of Plant Nutrition 9: 214.

Marschner, P. 2011. Marschner's Mineral Nutrition of Higher Plants. 3rd ed. Amsterdam, Netherlands: Elsevier/Academic Press. p. 684.

Marschner, P. 1995. Mineral Nutrition of Higher Plants. 2nd ed. London: Academic Press.

Mengel, K. 1994. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil 165: 275-283.

Mertens, D.R. 2005. AOAC official method 975.03. Metal in plants and pet foods. In Official Methods of Analysis. 18th ed., edited by Horwitz, W. & Latimer, G.W. Gaithersburg, MD.: AOAC-International. pp. 3-4.

Orhan, E., Esitken, A., Ercisli, S., Turan, M. & Sahin, F. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae 111: 38-43.

Rombolà, A.D. & Tagliavini, M. 2006. Iron Nutrition of Fruit Tree Crops, Iron Nutrition in Plants and Rhizospheric Microorganisms. The Netherlands: Springer. pp. 61-83.

Saunders, M.J. 1992. Cytokinin signal transduction throught Ca2+ in mosses. In Progress in Plant Growth Regulation, edited by Karssen, C.M., Van Loon, L.C. & Vreugdenhil, D. Dordrecht, the Netherlands: Kluwer Academic. pp. 65-72.

Sorrenti, G., Toselli, M. & Marangoni, B. 2012. Use of compost to manage Fe nutrition of pear trees grown in calcareous soil. Scientia Horticulturae 136: 87-94.

Tagliavini, M. & Rombolà, A.D. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15: 71-92.

Turan, M., Ataoglu, N. & Sezen, Y. 2004. Effects of phosphorus solubilizing bacteria (Bacillus megaterium) on yield and phosphorus contents of tomato plant (Lycopersicon esculentum L.) III. In Proceedings of Third National Fertilizer Congress, Farming-Industry-Environment. pp: 939-945.

Tsukanova, K.A., Meyer, J.J.M. & Bibikova, T.N. 2017. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South African Journal of Botany 113: 91-102.

Uddling, J., Gelang-Alfredsson, J., Piikki, K. & Pleije, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research 91: 37-46.

Zhang, H., Sun, Y., Xie, X., Kim, M.S., Dowd, S.E. & Paré, P.W. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal 58: 568-577.

 

*Corresponding author; email: mipek@selcuk.edu.tr

 

 

           

previous