Sains Malaysiana 50(9)(2021): 2615-2624
http://doi.org/10.17576/jsm-2021-5009-10
Influence of Bacterial Inoculation
on Growth and Plant Nutrition of Peach Grafted in Different Rootstocks in
Calcareous Soil
(Kesan Inokulasi Bakteria ke atas Pertumbuhan dan Nutrisi Tumbuhan Tanaman Pic yang Dicantum pada Stok Akar Berbeza di Tanah Berkapur)
MUZAFFER İPEK1*, ŞEYMA
ARIKAN1, AHMET EŞITKEN1, LÜTFI PIRLAK1,
MESUDE FIGEN DÖNMEZ2 & METIN TURAN3
1Department of Horticulture, Faculty of Agriculture, University
of Selçuk, 42075 Konya, Turkey
2Department of Plant Protection, Faculty of Agriculture, University
of Iğdır, 76000 Iğdır,
Turkey
3Department of Genetics and Bioengineering Plant Protection, Faculty
of Engineering, University of Yeditepe, 34755
İstanbul, Turkey
Received:
28 March 2020/Accepted: 2
February 2021
ABSTRACT
The highly
calcareous soil limits plant growth parameters due to inadequate uptake of
plant nutrients. Calcareous soil conditions affect plant growth through
impaired chlorophyll synthesis, root growth, enzyme synthesis, and nutrient
uptake. To overcome the negative effect of calcareous soil, six bacterial
strains namely Alcaligenes 637Ca, Agrobacterium A18, Staphylococcus MFDCa1, Staphylococcus MFDCa2, Bacillus M3, and Pantoea FF1 were inoculated in one-year-old
plants of peach cultivar ‘Elegant Lady’ grafted onto GF677 and Nemaguard rootstocks. The bacterial treatments were
observed to improve plant growth and nutrient content compared to the control.
Moreover, the GF677 rootstock was observed to be more tolerant to high
calcareous soil conditions than Nemaguard, showing
better plant growth and nutrient content. At the Nemaguard rootstocks, the largest leaf area was observed to be upon inoculation with
MFDCa2 (29.1 cm2), FF1 (28.8 cm2), and M3 (28.1 cm2),
whereas at the GF677 rootstock, the highest leaf area was observed upon
inoculation with MFDCa1 (34.7 cm2), FF1 (32.6 cm2), and
637Ca (31.5 cm2). The leaf iron content was higher in bacterial
treatments than the control. In the Nemaguard rootstock, the highest iron content was measured in plants inoculated with
637Ca (133.49 mg kg–1) and M3 (127.64 mg kg–1), whereas
in the GF677 rootstock, the treatments MFDCa1 (131.51 mg kg–1),
637Ca (131.21 mg kg–1), FF1 (127.72 mg kg–1), and M3
(127.68 mg kg–1) resulted in high iron content. The results indicate
that bacterial inoculations have a significant potential to improve plant
growth and can be used as biofertilizers for peach grafted onto Nemaguard and GF677 in high calcareous soil conditions.
Keywords: Calcareous soil;
peach; plant growth-promoting rhizobacteria (PGPR); plant nutrition; Prunus persica L.
ABSTRAK
Tanah yang
sangat berkapur mengehadkan pertumbuhan tanaman kerana pengambilan nutrien
tumbuhan yang tidak mencukupi. Keadaan tanah berkapur mempengaruhi pertumbuhan
tanaman dengan menjejaskan sintesis klorofil, pertumbuhan akar, sintesis enzim
dan pengambilan nutrien. Untuk mengatasi kesan negatif tanah berkapur, enam
strain bakteria iaitu Alcaligenes 637Ca, Agrobacterium A18, Staphylococcus MFDCa1, Staphylococcus MFDCa2, Bacillus M3 dan Pantoea FF1 telah diinokulasi pada
tanaman pic kultivar ‘Elegant Lady’ yang berusia satu tahun yang dicantumkan
kepada stok akar GF677 dan Nemaguard. Rawatan bakteria didapati telah
meningkatkan pertumbuhan tanaman dan kandungan nutrien dibandingkan dengan
kawalannya. Tambahan pula, stok akar GF677 dilihat lebih tolerans terhadap
keadaan tanah berkapur berbanding Nemaguard, serta menunjukkan pertumbuhan
tanaman dan kandungan nutrien yang lebih baik. Pada stok akar Nemaguard,
keluasan daun diperhatikan pada inokulasi dengan MFDCa2
(29.1 cm2), FF1 (28.8 cm2) dan M3 (28.1 cm2), sedangkan pada stok akar GF677, keluasan daun terbesar diperhatikan pada
inokulasi dengan MFDCa1 (34.7 cm2), FF1 (32.6 cm2)
dan 637Ca (31.5 cm2). Kandungan
zat besi dalam daun didapati lebih tinggi dalam rawatan bakteria berbanding
kawalannya. Pada stok akar Nemaguard, kandungan zat besi tertinggi diukur pada
tanaman yang diinokulasi dengan 637Ca (133.49
mg/kg) dan M3 (127.64 mg/kg), manakala pada stok
akar GF677, rawatan MFDCa1 (131.51 mg/kg), 637Ca (131.21 mg/kg), FF1 (127.72
mg/kg) dan M3 (127.68 mg/kg) menghasilkan kandungan zat besi yang tinggi. Hasil
menunjukkan bahawa inokulasi bakteria berpotensi besar untuk meningkatkan
pertumbuhan tanaman dan dapat digunakan sebagai bio-baja untuk tanaman pic yang
dicantumkan kepada stok akar Nemaguard dan GF677 dalam keadaan tanah berkapur.
Kata kunci: Nutrisi tumbuhan; Prunus persica L.; rhizobakteria penggalak pertumbuhan tanaman (PGPR); tanah berkapur; tanaman pic
References
Saunders 1992
Adepetu, J. & Akapa, L. 1977. Root
growth and nutrient uptake characteristics of some cowpea varieties. Agronomy Journal 69: 940-943.
Arikan, Ş. & Pirlak, L. 2016.
Effects of plant growth promoting rhizobacteria (PGPR) on growth, yield and
fruit quality of sour cherry (Prunus cerasus L.). Erwerbs-obstbau 58(4): 221-226.
Arikan, Ş., İpek, M., Eşitken, A., Pirlak, L., Dönmez, M.F. & Turan, M.
2020. Plant growth promoting rhizobacteria mitigate deleterious combined
effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition 40(13): 2028-2039.
Bremner, J. 1996. Nitrogen-total methods of soil analysis: Part 3. Chemical Methods 5: 1085-1121.
Cakmakci, R., Turan, M., Gulluce,
M. & Sahin, F. 2014. Rhizobacteria for reduced
fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on Aridisols in Turkey. International
Journal of Plant Production 8(2): 163-182.
Cakmakci, R., Dönmez, M.F. & Erdoğan, Ü. 2007. The effect of plant growth promoting
rhizobacteria on barley seedling growth, nutrient uptake, some soil properties,
and bacterial counts. Turkish Journal of Agriculture and Forestry 31:
189-199.
Çakmakçı, R., Kantar, F. & Sahin, F.
2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and
barley. Journal of Plant Nutrition and
Soil Science 164: 527-531.
Egamberdiyeva, D. 2005. Plant-growth-promoting rhizobacteria isolated from
a Calcisol in a semi-arid region of Uzbekistan:
Biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science 168: 94-99.
Elkoca, E., Kantar, F. & Sahin, F.
2007. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation,
plant growth, and yield of chickpea. Journal
of Plant Nutrition 31: 157-171.
Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M. & Gunes, A. 2010.
Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient
contents of organically grown strawberry. Scientia Horticulturae 124: 62-66.
Esitken, A., Pirlak, L., Turan, M. & Sahin, F. 2006.
Effects of floral and foliar application of plant growth promoting
rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae 110: 324-327.
Esitken, A., Karlidag, H., Ercisli, S., Turan, M. & Sahin, F. 2003. The effect of spraying a growth promoting
bacterium on the yield, growth and nutrient element composition of leaves of
apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research 54: 377-380.
Eşitken, A., Karlidağ, H., Ercişli, S. & Şahin,
F. 2002. Effects of foliar application of Bacillus subtilis Osu-142 on
the yield, growth and control of shot-hole disease (Coryneum blight). Gartenbauwissenschaft 67: 139.
Fernandez‐Lopez, J., Lopez-Roca, J. & Almela,
L. 1993. Mineral composition of iron chlorotic Citrus limon L. leaves. Journal of Plant Nutrition 16:
1395-1407.
García de Salamone, I.E.,
Hynes, R.K. & Nelson, L.M. 2001. Cytokinin production by plant growth
promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology 47: 404-411.
Glick, B.R. 1995. The
enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109-117.
İpek, M. & Eşitken, A. 2017.
The actions of PGPR on micronutrient availability in soil and plant under
calcareous soil conditions: An evaluation over Fe nutrition. In Plant-Microbe
Interactions in Agro-Ecological Perspectives, edited by Singh D., Singh H., Prabha R. Singapore: Springer. https://doi.org/10.1007/978-981-10-6593-4_4.
İpek, M., Pirlak, L., Esitken, A., Figen, D.M., Turan, M. & Sahin, F. 2014.
Plant growth-promoting rhizobacteria (PGPR) increase yield, growth and
nutrition of strawberry under high-calcareous soil conditions. Journal of Plant Nutrition 37(7):
990-1001.
Karakurt, H. & Aslantas, R. 2010.
Effects of some plant growth promoting rhizobacteria (PGPR) strains on plant
growth and leaf nutrient content of apple. Journal
of Fruit and Ornamental Plant Research 18: 101-110.
Karakurt, H., Kotan, R., Dadaşoğlu,
F., Aslantaş, R. & Şahin,
F. 2011. Effects of plant growth promoting rhizobacteria on fruit set,
pomological and chemical characteristics, color values, and vegetative growth
of sour cherry (Prunus cerasus cv. Kütahya). Turkish Journal of Biology 35: 283-291.
Karlidag, H., Esitken, A., Turan, M. & Sahin, F. 2007.
Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on
yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae 114: 16-20.
Kaymak, H.Ç., Güvenç, İ., Yarali, F. & Dönmez, M.F.
2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline
conditions. Turkish Journal of
Agriculture and Forestry 33: 173-179.
Kaymak, H., Yarali, F., Guvenc, I. & Donmez, M.F.
2008. The effect of inoculation with plant growth rhizobacteria (PGPR) on root
formation of mint (Mentha piperita L.) cuttings. African Journal of
Biotechnology 7(24): 4479-4483.
Larbi, A., Abadía, A., Abadía, J. &
Morales, F. 2006. Down co-regulation of light absorption, photochemistry, and
carboxylation in Fe-deficient plants growing in different environments. Photosynthesis Research 89: 113-126.
Loeppert, R. 1986. Reactions of iron and carbonates in calcareous
soils. Journal of Plant Nutrition 9:
214.
Marschner, P. 2011. Marschner's Mineral Nutrition of Higher Plants. 3rd ed. Amsterdam, Netherlands:
Elsevier/Academic Press. p. 684.
Marschner, P. 1995. Mineral Nutrition of Higher Plants. 2nd ed.
London: Academic Press.
Mengel, K. 1994. Iron availability in plant tissues-iron chlorosis
on calcareous soils. Plant and Soil 165: 275-283.
Mertens, D.R. 2005. AOAC official method 975.03. Metal
in plants and pet foods. In Official Methods of Analysis. 18th ed.,
edited by Horwitz, W. & Latimer, G.W. Gaithersburg, MD.: AOAC-International. pp. 3-4.
Orhan, E., Esitken, A., Ercisli, S., Turan, M. & Sahin, F. 2006. Effects of plant growth promoting
rhizobacteria (PGPR) on yield, growth and nutrient contents in organically
growing raspberry. Scientia Horticulturae 111: 38-43.
Rombolà, A.D. & Tagliavini, M. 2006. Iron
Nutrition of Fruit Tree Crops, Iron Nutrition in Plants and Rhizospheric Microorganisms. The Netherlands: Springer. pp. 61-83.
Saunders, M.J. 1992. Cytokinin signal transduction throught Ca2+ in mosses. In Progress in Plant Growth Regulation, edited by Karssen, C.M., Van Loon, L.C. & Vreugdenhil, D. Dordrecht, the Netherlands: Kluwer Academic. pp. 65-72.
Sorrenti, G., Toselli, M. & Marangoni,
B. 2012. Use of compost to manage Fe nutrition of pear trees grown in
calcareous soil. Scientia Horticulturae 136: 87-94.
Tagliavini, M. & Rombolà, A.D. 2001. Iron
deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15: 71-92.
Turan, M., Ataoglu, N. & Sezen, Y. 2004. Effects of phosphorus solubilizing bacteria
(Bacillus megaterium) on yield and
phosphorus contents of tomato plant (Lycopersicon esculentum L.) III. In Proceedings of Third National
Fertilizer Congress, Farming-Industry-Environment. pp: 939-945.
Tsukanova, K.A., Meyer,
J.J.M. & Bibikova, T.N. 2017. Effect of plant growth-promoting
Rhizobacteria on plant hormone homeostasis. South African Journal of
Botany 113: 91-102.
Uddling, J., Gelang-Alfredsson, J., Piikki, K. & Pleije, H. 2007.
Evaluating the relationship between leaf chlorophyll concentration and SPAD-502
chlorophyll meter readings. Photosynthesis Research 91: 37-46.
Zhang, H., Sun, Y., Xie, X., Kim, M.S., Dowd, S.E. & Paré,
P.W. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The
Plant Journal 58: 568-577.
*Corresponding
author; email: mipek@selcuk.edu.tr
|