Sains Malaysiana 50(9)(2021): 2713-2725

http://doi.org/10.17576/jsm-2021-5009-18

 

Biomechanical Analysis of an Improvement of Prosthetic Liner using Polyurethane Focusing at the Anterior-Distal Part of Residual Limb: A Case Study

(Analisis Biomekanik Pelapik Prostetik yang telah Ditambahbaik menggunakan Poliuretana Memfokus pada Bahagian Hujung Bawah Anggota: Suatu Kajian Kes)

 

MOHAMED AFIFUDDEEN BIN MOHAMED NIZAM, NASRUL ANUAR ABD RAZAK* & NOOR AZUAN ABU OSMAN

 

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 24 August 2020/Accepted: 26 January 2021

 

ABSTRACT

Most transtibial prosthesis users always experience pain sensation at the distal of the residual limb due to bony prominences and nerve endings. Many initiatives have been taken to resolve this problem, including using softer materials such as silicone or gel liner and designing a distal off load prosthetic socket. Another promising approach is to incorporate polyurethane foam in the manufacturing of prosthetic liner. This study aimed to design a new prosthetic liner using polyurethane at the anterior-distal part of the residual limb as a Pelite replacement and to compare the biomechanical gait analysis between the new modified polyurethane liner and the common Pelite liner. A unilateral transtibial amputee was recruited as the subject. Two Patellar Tendon Bearing transtibial prostheses with different liners were fabricated for the subject, which were Pelite liner and a modified polyurethane foam liner. The modified liner using polyurethane foam consisted of Ethylene vinyl-acetate – Polyurethane – Ethylene vinyl-acetate sandwich placed at the anterior-distal part of the residual limb. The Ethylene vinyl-acetate – Polyurethane – Ethylene vinyl-acetate sandwich function was to improve the walking gait and compensate for the pain sensation experienced by the subject when wearing the Pelite liner. Biomechanical analysis was done using the Vicon Motion Analysis System on the subject when using the two newly fabricated transtibial prostheses and the subject’s original prosthesis with Pelite liner. During the loading response phase, the original liner exerted a slightly higher force than the Pelite and the modified liner. At 30% and 50% of the gait cycle, the original liner exerted low force than the Pelite liner and the modified liner for Ground Reaction Force at the amputated side. However, no significant difference (p>0.05) was found between all prosthetic liners for Ground Reaction Force (Non-Amputated). The biomechanical analysis showed that the modified liner using polyurethane foam improved the prosthesis user gait cycle and the walking gait of the prosthesis user.

 

Keywords: Gait analysis; polyurethane; rehabilitation; transtibial liner

 

ABSTRAK

Kebanyakan pengguna kaki palsu bawah lutut sering mengalami kesakitan pada bahagian hujung anggota disebabkan oleh penonjolan bertulang dan ujung saraf. Telah banyak inisiatif yang telah dilakukan untuk menyelesaikan masalah ini, termasuklah menggunakan bahan lembut seperti pelapik silikon atau pelapik gel dan mereka bentuk soket prostetik tiada beban di bahagian hujung anggota. Antara pendekatan lain ialah menggabungkan busa poliuretana di dalam pembuatan pelapik prostetik. Kajian ini bertujuan untuk mereka bentuk pelapik prostetik baharu menggunakan poliuretana pada bahagian hujung bawah anggota sebagai pengganti Pelite dan membandingkan analisis gait biomekanik di antara pelapik poliuretana yang diubah suai dan pelapik Pelite biasa.  Seorang amputee bawah lutut telah direkrut sebagai subjek. Dua kaki palsu bawah lutut Tendon Patellar dengan dua pelapik yang berbeza telah dibuat untuk subjek, iaitu pelapik Pelite dan pelapik poliuretana yang diubah suai. Pelapik poliuretana diubah suai terdiri daripada gabungan Etilena vinil asetat - Poliuretana - Etilena vinil asetat yang diletakkan pada hujung bawah anggota. Fungsi gabungan Etilena vinil asetat - Poliuretana - Etilena vinil asetat ialah untuk memperbaiki langkah gait dan mengimbangi sensasi kesakitan yang dialami oleh subjek semasa memakai pelapik Pelite. Analisa biomekanik telah dilakukan menggunakan Sistem Analisa Gerakan Vicon ke atas subjek ketika menggunakan kedua-dua kaki palsu baharu dan kaki palsu asal dengan pelapik Pelite miliknya. Semasa fasa tindak balas, pelapik asal miliknya menghasilkan daya yang agak tinggi berbanding pelapik Pelite berbanding pelapik yang diubah suai. Pada 30% dan 50% kitaran gait, pelapik asal miliknya menghasilkan daya yang kurang berbanding pelapik Pelite dan pelapik yang di ubah suai untuk Daya Tindak Balas Tanah di bahagian sebelah badan yang diamputasi. Namun begitu, tiada perbezaan ketara (p>0.05) yang telah ditemui antara kesemua pelapik prostetik untuk Daya Tindak Balas Tanah (Tidak Diamputasi). Analisa biomekanik menunjukkan bahawa pelapik yang diubah suai menggunakan poliuretana memperbaiki kitaran gait dan langkah gait bagi pengguna kaki palsu.

 

Kata kunci: Analisa gait; pelapik bawah lutut; poliuretana; rehabilitasi

 

REFERENCES

Ali, S., Abu Osman, N.A. Razak, A. Hussain, S. & Abas. W. The effect of dermo and seal-in ×5 prosthetic liners on pressure distributions and reported satisfaction during ramp ambulation in persons with transtibial limb loss. Eur. J. Phys. Rehabil. Med. 51: 31-37.

Anderson, B.D., Nordquist, P., Skarman, E., Boies, M.T., Anderson, G.B. & Carmack, D.B. 2007. Integrated lower extremity trauma simulator. In MMVR. pp. 19-24.

Andrysek, J. & Eshraghi, A. 2016. Influence of prosthetic socket design and fitting on gait. In Handbook of Human Motion, edited by Müller B. & Wolf, S. Springer International Publishing. pp. 1-25. https://doi.org/10.1007/978-3-319-30808-1_76-1.

Arezoo Eshraghi, Noor Azuan Abu Osman, Hossien Gholizadeh, Sadeeq Ali & Wan Abu Bakar Wan Abas. 2015. Interface stress in socket/residual limb with transtibial prosthetic suspension systems during locomotion on slopes and stairs. American Journal of Physical Medicine & Rehabilitation 94(1): 1-10.

Biddiss, E. & Andrysek, J. 2011. Upper and Lower Extremity Prosthetics for Children and Youth. Boca Raton: CRC Press.

Dudek, N.L., Marks, M.B., Marshall, S.C. & Chardon, J.P. 2005. Dermatologic conditions associated with use of a lower-extremity prosthesis. Archives of Physical Medicine and Rehabilitation 86(4): 659-663.

Esposito, E.R., Stinner, D.J., Fergason, J.R. & Wilken, J.M. 2017. Gait biomechanics following lower extremity trauma: Amputation vs. reconstruction. Gait & Posture 54: 167-173.

Grimmer, M., Holgate, M., Ward, J., Boehler, A. & Seyfarth, A. 2017. Feasibility study of transtibial amputee walking using a powered prosthetic foot. 2017 International Conference on Rehabilitation Robotics (ICORR). pp. 1118-1123.    

Hossein Gholizadeh, Noor Azuan Abu Osman, Arezoo Eshraghi, Sadeeq Ali, Wan Abu Bakar     Wan Abas & Gholam Hossein Pirouzi. 2012. Transtibial prosthetic suspension: Less pistoning versus easy donning and doffing. Journal of Rehabilitation Research and Development 49(9): 1321-1330.

Kamiar Ghoseiri, Mohammad Yusuf Rastkhadiv & Mostafa Allami. 2018. Evaluation of localized pain in the transtibial residual limb. Canadian Prosthetics & Orthotics Journal 1(2).

Kirkup, J.R. 2007. A History of Limb Amputation. Springer Science & Business Media.

Klaassen, M., De Vries, E.G. & Masen, M.A. 2019. Friction in the contact between skin and a soft counter material: Effects of hardness and surface finish. Journal of the Mechanical Behavior of Biomedical Materials 92: 137-143.

Lee, W.C., Zhang, M. & Mak, A.F. 2005. Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material. Archives of Physical Medicine and Rehabilitation 86(4): 641-649.

Li, W., Liu, X.D., Cai, Z.B., Zheng, J. & Zhou, Z.R. 2011. Effect of prosthetic socks on the frictional properties of residual limb skin. Wear 271(11-12): 2804-2811.

McMonagle, C, Williams, A. & Brentnall, L. 2007. SLSPO Transtibial Prosthetics Course Manual. Sri-Lanka School of Prosthetics and Orthotics.

Miller, M.S., Newgent, E.W., O'Connell, S.M. & Broadus, C. 2017. A comprehensive scoring system to evaluate patient-centred risk factors regarding lower extremity amputation. Journal of Wound Care 26(Sup10): S20-S28.

Nazri Mohd Yusof, Jamalludin Ab Rahman, Ahmad Hafiz Zulkifly, Aminudin Che-Ahmad, Kamarul Ariffin Khalid, Ahmad Fadzli Sulong & Naveen Vijayasingham. 2015. Predictors of major lower limb amputation among type II diabetic patients admitted for diabetic foot problems. Singapore Medical Journal 56(11): 626-631.

Plitz, W., Kuhn, V., Maier, A., Carl, C. & Hagena, F. 1993. Injury mechanisms of the ankle joint in high ski boots: Photoelastic and mechanical investigations on the human bone specimen. In Skiing Trauma and Safety: Ninth International Symposium, edited by Johnson, R., Mote, C. & Zelcer, J. West Conshohocken, PA: ASTM International. pp. 150-161.

Porter, S. 2013. Tidy's Physiotherapy E-Book. Elsevier Health Sciences.

Sadeeq Ali. 2015. Interface pressure between socket and residual limb in prosthesis with seal-in X5 and dermo liner during level ground, stairs, and ramp walking/Sadeeq Ali. PhD diss., University of Malaya (Unpublished).

Sankaran, Sakthivel, Pallikonda Rajasekaran Murugan, Jennifer Christy Johnson, Hazzana Jasmin Sheik Abdullah, Christal Marshalla Nirmal Raj, & Deepika Ashokan. 2019. Prevention of skin problems in patients using prosthetic limb: A review of current technologies and limitations. 2019 International Conference on Communication and Signal Processing (ICCSP). pp. 0077-0081.

Smith, D.G. 2004. Prosthetic suspensions and components. In Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation, edited by Douglas, J.W. & Smith, G. Rosemont: American Academy of Orthopaedic Surgeons. p. 409.

Staros, A. & Schwartz, R.S. 1988. Custom footwear: The role of computer-aided engineering. Journal of Testing and Evaluation 16(4): 417-420.

Van Valkenburg, S., Werner, F., Bhimji, S., White, B. & Asseman, F. 2016. Assessment of physiological load testing of total knee implants. Journal of Testing and Evaluation 44(1): 258-267.

 

*Corresponding author; email: nasrul.anuar@um.edu.my

 

 

     

previous