Sains
Malaysiana 50(9)(2021): 2755-2764
http://doi.org/10.17576/jsm-2021-5009-21
Adaptive Elastic Net with Distance Correlation on the Grouping Effect and Robust of High Dimensional
Stock Market Price
(Jaring Elastik Mudah Suai dengan
Korelasi Jarak ke atas Kesan Pengelompokan dan Keteguhan Dimensi Tinggi Harga Pasaran Saham)
YUSRINA ANDU1,2, MUHAMMAD HISYAM LEE2* & ZAKARIYA YAHYA ALGAMAL3
1Faculty of Computer and Mathematical Sciences, Universiti
Teknologi MARA, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan Darul
Khusus, Malaysia
2Department of Mathematical Sciences, Faculty
of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul
Takzim, Malaysia
3Department of Statistics and Informatics, University
of Mosul, Mosul, Iraq
Received: 26 July
2020/Accepted: 18 January 2021
ABSTRACT
Stock market is found in many financial studies. Nonetheless,
many of these literatures do not consider on the highly correlated stock market
price. In particular, the studies on variable selection, grouping effects and
robust dedicated to high dimension stock market price can be considered as
scarce. Penalized linear regression using elastic net is one of the recognized
methods to perform variable selection. However, the lack of consistency in
variable selection may reduce the model performance. Hence, adaptive elastic net with distance correlation (AEDC)
is proposed in this study and compared against elastic net, adaptive elastic
net with elastic weight and adaptive elastic net with ridge weight. AEDC had
lower mean squared error when the alpha increases from 0.05 to 0.95. Thus, the
proposed method has successfully contributed to encouraging grouping effects
between the highly correlated variables and also has an improved model
performance in the presence of robustness.
Keywords: Adaptive elastic net; high dimensional data; penalized
linear regression; robust; stock market price
ABSTRAK
Pasaran
saham sering ditemui dalam banyak kajian kewangan. Namun begitu, kebanyakan
literatur tidak mengambil kira mengenai harga pasaran saham yang berkorelasi
tinggi. Secara terperincinya, kajian mengenai pemilihan pemboleh ubah,
penggalakan kesan pengelompokan dan keteguhan yang didedikasikan terhadap harga
pasaran saham berdimensi tinggi adalah kurang. Kaedah regresi linear terhukum
merupakan salah satu kaedah yang diperakui untuk melakukan pemilihan pemboleh
ubah. Namun demikian, pemilihan pemboleh ubah yang kurang tekal boleh
menjejaskan keberhasilan model. Maka, jaring elastik mudah suai dengan korelasi
jarak (EJMSKJ) diusulkan dalam kajian ini dan dibandingkan dengan jaring elastik, jaring elastik mudah suai dengan pemberat elastik dan jaring elastik
mudah suai dengan pemberat batas. EJMSKJ mempunyai min ralat kuasa dua yang
rendah apabila nilai alfa meningkat daripada 0.05 ke 0.95. Maka, kaedah yang
diusulkan telah menyumbang kepada penggalakan kesan pengelompokan antara
pemboleh ubah berkorelasi tinggi dan juga keberhasilan model yang lebih baik
apabila keteguhan wujud.
Kata
kunci: Data dimensi tinggi; harga pasaran saham; jaring elastik mudah suai; regresi linear terhukum; teguh
REFERENCES
Alhamzawi, R. 2015. Model selection
in quantile regression models. Journal of Applied Statistics 42(2):
445-458.
Andu, Y.,
Lee, M.H. & Algamal, Z.Y. 2020. Variable selection of yearly high dimension
stock market price using ordered homogenous pursuit lasso. AIP Conference
Proceedings 2266(1): 090012.
Arashi, M.
& Roozbeh, M. 2019. Some improved estimation strategies in high-dimensional
semiparametric regression models with application to riboflavin production data. Statistical Papers 60(3): 317-336.
Dong, Y.,
Song, L. & Amin, M. 2018. SCAD-ridge penalized likelihood estimators for
ultra-high dimensional models. Hacettepe Journal of Mathematics and
Statistics 47(2): 423-436.
Gharleghi,
B., Shaari, A.H. & Sarmidi, T. 2014. Application of the threshold model for
modelling and forecasting of exchange rate in selected ASEAN countries. Sains
Malaysiana 43(10): 1609-1622.
Hastie, T.,
Tibshirani, R. & Wainwright, M. 2015. Statistical Learning with
Sparsity: The Lasso and Generalizations. Boca Raton: Chapman and Hall/CRC.
Hoerl, E.
& Kennard, R.W. 1970. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1): 55-67.
Jafry,
N.H.A., Ab Razak, R. & Ismail, N. 2020. Ukuran kebersandaran bagi pulangan lima-minit
berbanding pulangan harian menggunakan kopula statik dan dinamik. Sains
Malaysiana 49(8): 2023-2034.
Kurnaz, F.S.,
Hoffmann, I. & Filzmoser, P. 2018. Robust and sparse estimation methods for
high-dimensional linear and logistic regression. Chemometrics and
Intelligent Laboratory Systems 172: 211-222.
Rish, I.
& Grabarnik, G. 2014. Sparse Modeling:Theory, Algorithms, and
Applications. Boca Raton: CRC Press.
Shen, C.,
Priebe, C.E. & Vogelstein, J.T. 2020. From distance correlation to
multiscale graph correlation. Journal of the American Statistical
Association115(529): 280-291.
Székely,
G.J., Rizzo, M.L. & Bakirov, N.K. 2007. Measuring and testing dependence by
correlation of distances. Annals of Statistics 35(6): 2769-2794.
Tibshirani,
R. 1996. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1): 267-288.
Zhou, D.X.
2013. On grouping effect of elastic net. Statistics and Probability Letters 83(9): 2108-2112.
Zou, H. &
Zhang, H.H. 2009. On the adaptive elastic-net with a diverging number of
parameters. Annals of Statistics 37(4): 1733-1751.
Zou, H. &
Hastie, T. 2005. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 67(2):
301-320.
*Corresponding
author; email: mhl@utm.my
|