Sains Malaysiana 50(9)(2021): 2819-2832

http://doi.org/10.17576/jsm-2021-5009-25

 

Aliran Titik Genangan MHD dan Pemindahan Haba terhadap Permukaan Telap Meregang/Mengecut dalam Nanobendalir Hibrid

(MHD Stagnation Point Flow and Heat Transfer towards a Permeable Stretching/Shrinking Surface in a Hybrid Nanofluid)

 

ISKANDAR WAINI1, ANUAR ISHAK2* & IOAN POP3

 

1Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

 

2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

 

Received: 18 March 2019/Accepted: 17 October 2019

 

ABSTRAK

Aliran mantap dan pemindahan haba dua matra terhadap titik genangan pada permukaan telap yang meregang/mengecut dalam nanobendalir hibrid dengan kesan medan magnet dikaji. Persamaan menakluk bagi masalah tersebut dijelmakan kepada satu set persamaan keserupaan dengan menggunakan penjelmaan keserupaan. Persamaan keserupaan yang terhasil kemudiannya diselesaikan secara berangka menggunakan penyelesai masalah nilai sempadan (bvp4c) dalam perisian Matlab. Kesan beberapa parameter terhadap pekali geseran kulit dan nombor Nusselt setempat serta profil halaju dan suhu dibentangkan dan dibincangkan. Keputusan berangka menunjukkan bahawa penyelesaian dual wujud bagi julat tertentu parameter regangan/kecutan dan fluks jisim. Didapati juga bahawa kadar pemindahan haba meningkat dengan peningkatan pecahan isi padu nanozarah tembaga (Cu) dan parameter fluks jisim. Analisis kestabilan dilakukan untuk menentukan kestabilan penyelesaian dual dalam jangka masa panjang dan keputusan menunjukkan bahawa hanya satu daripada penyelesaian tersebut yang stabil manakala yang lain adalah tidak stabil.

 

Kata kunci: Analisis kestabilan; MHD; nanobendalir hibrid; penyelesaian dual; permukaan meregang/mengecut; titik genangan

 

ABSTRACT

The steady two-dimensional stagnation point flow and heat transfer past a permeable stretching/shrinking surface in a hybrid nanofluid with magnetic field effects is investigated. The governing equations of the problem are converted into a set of similarity equations by using similarity transformation. The resulting similarity equations are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The effects of several parameters on the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented and discussed. Results found that dual solutions exist for a certain range of the stretching/shrinking and mass flux parameters. It is also found that the heat transfer rate increases with the increasing of the copper (Cu) nanoparticle volume fractions and mass flux parameter. A temporal stability analysis is performed to determine the stability of the dual solutions in a long run, and it is shown that only one of them is stable while the other is unstable.

 

Keywords: Dual solutions; hybrid nanofluid; MHD; stability analysis; stagnation point; stretching/shrinking surface

 

REFERENCES

Ahmadi, M.H., Mirlohi, A., Alhuyi Nazari, M. & Ghasempour, R. 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids 265: 181-188.

Akilu, S., Sharma, K.V., Baheta, A.T. & Mamat, R. 2016. A review of thermophysical properties of water based composite nanofluids. Renewable and Sustainable Energy Reviews 66: 654-678.

Awaludin, I.S., Ishak, A. & Pop, I. 2018. On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Scientific Reports 8: 13622.

Babu, J.A.R., Kumar, K.K. & Rao, S.S. 2017. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 77: 551-565.

Bachok, N. & Ishak, A. 2011. Similarity solutions for the stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet. Sains Malaysiana 40(11): 1297-1300.

Bachok, N., Ishak, A. & Pop, I. 2011. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters 6: 623.

Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. San Francisco, CA.

Crane, L.J. 1970. Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21(4): 645-647.

Das, P.K. 2017. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal of Molecular Liquids 240: 420-446.

Das, S.K., Choi, S.U.S., Yu, W. & Pradeep, T. 2007. Nanofluids: Science and Technology. New Jersey: Wiley-Interscience.

Devi, S.S.U. & Devi, S.P.A. 2017. Heat transfer enhancement of Cu−Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society 36(2): 419-433.

Devi, S.P.A. & Devi, S.S.U. 2016. Numerical investigation of hydromagnetic hybrid Cu- Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation 17(5): 249-257.

Dinarvand, S. 2019. Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: A novel hybridity model. Microsystem Technologies. m.s. 1-15.

Fang, T.G., Zhang, J. & Yao, S.S. 2009. Viscous flow over an unsteady shrinking sheet with mass transfer. Chinese Physics Letters 26(1): 2-5.

Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. & Ganji, D.D. 2017. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology 322: 428-438.

Goldstein, S. 1965. On backward boundary layers and flow in converging passages. Journal of Fluid Mechanics 21(1): 33-45.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267-285.

Hayat, T. & Nadeem, S. 2017. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics 7: 2317-2324.

Hayat, T., Nadeem, S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. European Physical Journal E 41(6): 75.

Hiemenz, K. 1911. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal 326: 321-410.

Homann, F. 1936. Der Einflub grober Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Zeitschrift für Angewandte Mathematik und Mechanik 16: 153-164.

Howarth, L. 1951. The boundary layer in three dimensional flow. –Part II. The flow near a stagnation point. Philosophical Magazine and Journal of Science 42(335): 1433-1440.

Huminic, G. & Huminic, A. 2018. Hybrid nanofluids for heat transfer applications – A state-of-the-art review. International Journal of Heat and Mass Transfer 125: 82-103.

Ishak, A., Nazar, R. & Pop, I. 2008. Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer 51(5-6): 1150-1155.

Jamshed, W. & Aziz, A. 2018. Cattaneo - Christov based study of TiO2–CuO/EG Casson hybrid nanofluid flow over a stretching surface with entropy generation. Applied Nanoscience 8(4): 685-698.

Jusoh, R., Nazar, R. & Pop, I. 2019. Impact of heat generation/absorption on the unsteady magnetohydrodynamic stagnation point flow and heat transfer of nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0300.

Kamal, F., Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.

Khashi’ie, N.S., Arifin, N.M., Nazar, R., Hafidzuddin, E.H., Wahi, N. & Pop, I. 2019. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies 12(7): 1268.

Kechil, S.A. & Hashim, I. 2009. Approximate analytical solution for MHD stagnation-point flow in porous media. Communications in Nonlinear Science and Numerical Simulation 14(4): 1346-1354.

Khanafer, K., Vafai, K. & Lightstone, M. 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46(19): 3639-3653.

Leong, K.Y., Ku Ahmad, K.Z., Ong, H.C., Ghazali, M.J. & Baharum, A. 2017. Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review. Renewable and Sustainable Energy Reviews 75: 868-878.

Lok, Y.Y., Ishak, A. & Pop, I. 2011. MHD stagnation point flow with suction towards a shrinking sheet. Sains Malaysiana 40(10): 1179-1186.

Mahian, O., Kolsi, L., Amani, M., Estellé, P., Ahmadi, G., Kleinstreuer, C., Marshall, J.S., Siavashi, M., Taylor, R.A., Niazmand, H., Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. & Pop, I. 2019a. Recent advances in modeling and simulation of nanofluid flows – Part I: Fundamentals and theory. Physics Reports 790: 1-48.

Mahian, O., Kolsi, L., Amani, M., Estellé, P., Ahmadi, G., Kleinstreuer, C., Marshall, J.S., Taylor, R.A., Abu-nada, E., Rashidi, S., Niazmand, H., Wongwises, S., Hayat, T., Kasaeian, A. & Pop, I. 2019b. Recent advances in modeling and simulation of nanofluid flows – Part II: Applications. Physics Reports 791: 1-59.

Merkin, J.H. 1980. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. Journal of Engineering Mathematics 14(4): 301-313.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics 64(2): 283-290.

Mohamed, M.K.A., Salleh, M.Z., Nazar, R. & Ishak, A. 2012. Stagnation point flow over a stretching sheet with Newtonian heating. Sains Malaysiana 41(11): 1467-1473.

Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow 29(5): 1326-1336.

Rashidi, M.M. & Erfani, E. 2011. A new analytical study of MHD stagnation-point flow in porous media with heat transfer. Computers and Fluids 40(1): 172-178.

Raza, J., Rohni, A. & Omar, Z. 2016. Numerical investigation of copper-water (Cu-Water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: Slip effects. Mathematical and Computational Applications 21(4): 43.

Rosali, H., Ishak, A. & Pop, I. 2011. Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. International Communications in Heat and Mass Transfer 38(8): 1029-1032.

Roşca, A.V., Roşca, N.C. & Pop, I. 2014. Note on dual solutions for the mixed convection boundary layer flow close to the lower stagnation point of a horizontal circular cylinder: Case of constant surface heat flux. Sains Malaysiana 43(8): 1239-1247.

Rosca, N.C., Grosan, T. & Pop, I. 2012. Stagnation-point flow and mass transfer with chemical reaction past a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana 41(10): 1271-1279.

Rostami, M.N., Dinarvand, S. & Pop, I. 2018. Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chinese Journal of Physics 56(5): 2465-2478.

Sajid, M.U. & Ali, H.M. 2019. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews 103: 556-592.

Sajid, M.U. & Ali, H.M. 2018. Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer 126: 211-234.

Sakiadis, B.C. 1961. Boundary-layer behaviour on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow. American Institute of Chemical Engineers Journal 7(1): 26-28.

Sarkar, J., Ghosh, P. & Adil, A. 2015. A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews 43: 164-177.

Shampine, L.F., Gladwell, I. & Thompson, S. 2003. Solving ODEs with MATLAB. Cambridge University Press. Cambridge: Cambridge University Press.

Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. & Najafi, G. 2016. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer 78: 68-79.

Soid, S.K., Ishak, A. & Pop, I. 2018. MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary. Sains Malaysiana 47(11): 2907-2916.

Subhani, M. & Nadeem, S. 2018. Numerical analysis of micropolar hybrid nanofluid. Applied Nanoscience 9: 447-459.

Sundar, L.S., Sharma, K.V., Singh, M.K. & Sousa, A.C.M. 2017. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews 68: 185-198.

Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer 50(9-10): 2002-2018.

Usman, M., Hamid, M., Zubair, T., Haq, R.U. & Wang, W. 2018. Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. International Journal of Heat and Mass Transfer 126: 1347-1356.

Waini, I., Ishak, A. & Pop, I. 2019a. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer 136: 288-297.

Waini, I., Ishak, A. & Pop, I. 2019b. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Physica Scripta 94(10): 105219.

Waini, I., Ishak, A. & Pop, I. 2019c. Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numerical Methods for Heat & Fluid Flow: https://doi.org/10.1108/HFF-01-2019-0057.

Waini, I., Ishak, A. & Pop, I. 2019d. Hybrid nano fluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. International Journal of Numerical Methods for Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0277.

Waini, I., Ishak, A. & Pop, I. 2019e. On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux. Chinese Journal of Physics 60: 651-658.

Wang, C.Y. 2008. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics 43(5): 377-382.

Wang, C.Y. 1990. Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics 48(4): 601-610.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science 44(11-12): 730-737.

Yih, K.A. 1998. The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta Mechanica 130(3-4): 147-158.

Yousefi, M., Dinarvand, S., Eftekhari Yazdi, M. & Pop, I. 2018. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. International Journal of Numerical Methods for Heat and Fluid Flow 28(7): 1716-1735.

Zaimi, W.M.K.A. & Ishak, A. 2012. Stagnation flow of a micropolar fluid towards a vertical permeable surface with prescribed heat flux. Sains Malaysiana 41(10): 1263-1270.

 

*Corresponding author: anuar_mi@ukm.edu.my

 

 

previous