Sains Malaysiana 50(9)(2021): 2819-2832
http://doi.org/10.17576/jsm-2021-5009-25
Aliran Titik Genangan MHD dan Pemindahan Haba terhadap Permukaan Telap Meregang/Mengecut dalam Nanobendalir Hibrid
(MHD Stagnation Point Flow and Heat
Transfer towards a Permeable Stretching/Shrinking Surface in a Hybrid
Nanofluid)
ISKANDAR WAINI1, ANUAR ISHAK2* & IOAN POP3
1Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
Received: 18 March 2019/Accepted: 17 October 2019
ABSTRAK
Aliran mantap dan pemindahan haba dua matra terhadap titik genangan pada permukaan telap yang meregang/mengecut dalam nanobendalir hibrid dengan kesan medan magnet dikaji. Persamaan menakluk bagi masalah tersebut dijelmakan kepada satu set persamaan keserupaan dengan menggunakan penjelmaan keserupaan. Persamaan keserupaan yang terhasil kemudiannya diselesaikan secara berangka menggunakan penyelesai masalah nilai sempadan (bvp4c) dalam perisian Matlab. Kesan beberapa parameter terhadap pekali geseran kulit dan nombor Nusselt setempat serta profil halaju dan suhu dibentangkan dan dibincangkan. Keputusan berangka menunjukkan bahawa penyelesaian dual wujud bagi julat tertentu parameter regangan/kecutan dan fluks jisim. Didapati juga bahawa kadar pemindahan haba meningkat dengan peningkatan pecahan isi padu nanozarah tembaga (Cu) dan
parameter fluks jisim. Analisis kestabilan dilakukan untuk menentukan kestabilan penyelesaian dual dalam jangka masa panjang dan keputusan menunjukkan bahawa hanya satu daripada penyelesaian tersebut yang stabil manakala yang lain adalah tidak stabil.
Kata kunci: Analisis kestabilan; MHD; nanobendalir hibrid; penyelesaian dual; permukaan meregang/mengecut; titik genangan
ABSTRACT
The steady two-dimensional stagnation point
flow and heat transfer past a permeable stretching/shrinking surface in a
hybrid nanofluid with magnetic field effects is investigated. The
governing equations of the problem are converted into a set of similarity
equations by using similarity transformation. The resulting similarity
equations are then solved numerically
using the boundary value problem solver (bvp4c) in Matlab software. The effects of several parameters on the skin friction coefficient
and the local Nusselt number as well as the velocity and temperature profiles
are presented and discussed. Results found that dual solutions exist for a
certain range of the stretching/shrinking and mass flux parameters. It is also
found that the heat transfer rate increases with the increasing of the copper (Cu)
nanoparticle volume fractions and mass flux parameter. A temporal stability
analysis is performed to determine the stability of the dual
solutions in a long run, and it is shown that only one of them is stable while the other is unstable.
Keywords:
Dual solutions; hybrid nanofluid; MHD; stability analysis; stagnation point;
stretching/shrinking surface
REFERENCES
Ahmadi,
M.H., Mirlohi, A., Alhuyi Nazari, M. & Ghasempour, R. 2018. A review of
thermal conductivity of various nanofluids. Journal of Molecular Liquids 265: 181-188.
Akilu, S., Sharma, K.V., Baheta, A.T. & Mamat, R.
2016. A review of thermophysical properties of water based composite
nanofluids. Renewable and Sustainable Energy Reviews 66: 654-678.
Awaludin, I.S., Ishak, A. & Pop, I. 2018. On the
stability of MHD boundary layer flow over a stretching/shrinking wedge. Scientific
Reports 8: 13622.
Babu, J.A.R., Kumar, K.K. & Rao, S.S. 2017.
State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy
Reviews 77: 551-565.
Bachok, N. & Ishak, A. 2011. Similarity solutions
for the stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking
sheet. Sains Malaysiana 40(11): 1297-1300.
Bachok, N., Ishak, A. & Pop, I. 2011.
Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale
Research Letters 6: 623.
Choi, S.U.S. & Eastman, J.A. 1995. Enhancing
thermal conductivity of fluids with nanoparticles. Proceedings of the 1995
ASME International Mechanical Engineering Congress and Exposition. San
Francisco, CA.
Crane, L.J. 1970. Flow past a stretching plate. Zeitschrift
Für Angewandte Mathematik Und Physik ZAMP 21(4): 645-647.
Das, P.K. 2017. A review based on the effect and
mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. Journal
of Molecular Liquids 240: 420-446.
Das, S.K., Choi, S.U.S., Yu, W. & Pradeep, T.
2007. Nanofluids: Science and Technology. New Jersey:
Wiley-Interscience.
Devi, S.S.U. & Devi, S.P.A. 2017. Heat transfer
enhancement of Cu−Al2O3/water hybrid nanofluid flow
over a stretching sheet. Journal of the Nigerian Mathematical Society 36(2): 419-433.
Devi, S.P.A. & Devi, S.S.U. 2016. Numerical
investigation of hydromagnetic hybrid Cu- Al2O3/water
nanofluid flow over a permeable stretching sheet with suction. International
Journal of Nonlinear Sciences and Numerical Simulation 17(5): 249-257.
Dinarvand, S. 2019. Nodal/saddle stagnation-point
boundary layer flow of CuO–Ag/water hybrid nanofluid: A novel hybridity model. Microsystem
Technologies. m.s. 1-15.
Fang, T.G., Zhang, J. & Yao, S.S. 2009. Viscous
flow over an unsteady shrinking sheet with mass transfer. Chinese Physics Letters 26(1): 2-5.
Ghadikolaei, S.S., Yassari, M., Sadeghi, H.,
Hosseinzadeh, K. & Ganji, D.D. 2017. Investigation on thermophysical
properties of TiO2–Cu/H2O hybrid nanofluid transport
dependent on shape factor in MHD stagnation point flow. Powder Technology 322: 428-438.
Goldstein, S. 1965. On backward boundary layers and
flow in converging passages. Journal of Fluid Mechanics 21(1): 33-45.
Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed
convection boundary-layer flow near the stagnation point on a vertical surface
in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267-285.
Hayat, T. & Nadeem, S. 2017. Heat transfer
enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics 7:
2317-2324.
Hayat, T., Nadeem, S. & Khan, A.U. 2018. Rotating
flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip
boundary effects. European Physical Journal E 41(6): 75.
Hiemenz, K. 1911. Die Grenzschicht an einem in den
gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers
Polytechnisches Journal 326: 321-410.
Homann, F. 1936. Der Einflub grober Zähigkeit bei der
Strömung um den Zylinder und um die Kugel. Zeitschrift für Angewandte
Mathematik und Mechanik 16: 153-164.
Howarth, L. 1951. The boundary layer in three
dimensional flow. –Part II. The flow near a stagnation point. Philosophical
Magazine and Journal of Science 42(335): 1433-1440.
Huminic, G. & Huminic, A. 2018. Hybrid nanofluids
for heat transfer applications – A state-of-the-art review. International
Journal of Heat and Mass Transfer 125: 82-103.
Ishak, A., Nazar, R. & Pop, I. 2008. Dual
solutions in mixed convection flow near a stagnation point on a vertical
surface in a porous medium. International Journal of Heat and Mass Transfer 51(5-6): 1150-1155.
Jamshed, W. & Aziz, A. 2018. Cattaneo - Christov
based study of TiO2–CuO/EG Casson hybrid nanofluid flow over a
stretching surface with entropy generation. Applied Nanoscience 8(4):
685-698.
Jusoh, R., Nazar, R. & Pop, I. 2019. Impact of
heat generation/absorption on the unsteady magnetohydrodynamic stagnation point
flow and heat transfer of nanofluids. International Journal of Numerical
Methods for Heat & Fluid Flow.
https://doi.org/10.1108/HFF-04-2019-0300.
Kamal, F., Zaimi,
K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD stagnation-point
flow towards a permeable stretching/shrinking sheet in a nanofluid with
chemical reactions effect. Sains Malaysiana 48(1): 243-250.
Khashi’ie, N.S., Arifin, N.M., Nazar,
R., Hafidzuddin, E.H., Wahi, N. & Pop, I. 2019. A stability analysis for
magnetohydrodynamics stagnation point flow with zero nanoparticles flux
condition and anisotropic slip. Energies 12(7): 1268.
Kechil, S.A. & Hashim, I. 2009. Approximate
analytical solution for MHD stagnation-point flow in porous media. Communications
in Nonlinear Science and Numerical Simulation 14(4): 1346-1354.
Khanafer, K., Vafai, K. & Lightstone, M. 2003.
Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure
utilizing nanofluids. International Journal of Heat and Mass Transfer 46(19): 3639-3653.
Leong, K.Y., Ku Ahmad, K.Z., Ong, H.C., Ghazali, M.J.
& Baharum, A. 2017. Synthesis and thermal conductivity characteristic of
hybrid nanofluids – A review. Renewable and Sustainable Energy Reviews 75: 868-878.
Lok, Y.Y., Ishak, A. & Pop, I. 2011. MHD
stagnation point flow with suction towards a shrinking sheet. Sains
Malaysiana 40(10): 1179-1186.
Mahian, O., Kolsi, L., Amani, M., Estellé, P., Ahmadi,
G., Kleinstreuer, C., Marshall, J.S., Siavashi, M., Taylor, R.A., Niazmand, H.,
Wongwises, S., Hayat, T., Kolanjiyil, A., Kasaeian, A. & Pop, I. 2019a.
Recent advances in modeling and simulation of nanofluid flows – Part I:
Fundamentals and theory. Physics Reports 790: 1-48.
Mahian, O., Kolsi, L., Amani, M., Estellé, P., Ahmadi,
G., Kleinstreuer, C., Marshall, J.S., Taylor, R.A., Abu-nada, E., Rashidi, S.,
Niazmand, H., Wongwises, S., Hayat, T., Kasaeian, A. & Pop, I. 2019b.
Recent advances in modeling and simulation of nanofluid flows – Part II:
Applications. Physics Reports 791: 1-59.
Merkin, J.H. 1980. Mixed convection boundary layer
flow on a vertical surface in a saturated porous medium. Journal of Engineering
Mathematics 14(4): 301-313.
Miklavčič, M. & Wang, C.Y. 2006. Viscous
flow due to a shrinking sheet. Quarterly of Applied Mathematics 64(2):
283-290.
Mohamed, M.K.A., Salleh, M.Z., Nazar, R. & Ishak,
A. 2012. Stagnation point flow over a stretching sheet with Newtonian heating. Sains
Malaysiana 41(11): 1467-1473.
Oztop, H.F. & Abu-Nada, E. 2008. Numerical study
of natural convection in partially heated rectangular enclosures filled with
nanofluids. International Journal of Heat and Fluid Flow 29(5): 1326-1336.
Rashidi, M.M. & Erfani, E. 2011. A new analytical
study of MHD stagnation-point flow in porous media with heat transfer. Computers
and Fluids 40(1): 172-178.
Raza, J., Rohni, A. & Omar, Z. 2016. Numerical
investigation of copper-water (Cu-Water) nanofluid with different shapes of
nanoparticles in a channel with stretching wall: Slip effects. Mathematical
and Computational Applications 21(4): 43.
Rosali, H., Ishak, A. & Pop, I. 2011. Stagnation
point flow and heat transfer over a stretching/shrinking sheet in a porous
medium. International Communications in Heat and Mass Transfer 38(8):
1029-1032.
Roşca, A.V., Roşca, N.C. & Pop, I. 2014.
Note on dual solutions for the mixed convection boundary layer flow close to
the lower stagnation point of a horizontal circular cylinder: Case of constant
surface heat flux. Sains Malaysiana 43(8): 1239-1247.
Rosca, N.C., Grosan, T. & Pop, I. 2012.
Stagnation-point flow and mass transfer with chemical reaction past a permeable
stretching/shrinking sheet in a nanofluid. Sains Malaysiana 41(10):
1271-1279.
Rostami, M.N., Dinarvand, S. & Pop, I. 2018. Dual
solutions for mixed convective stagnation-point flow of an aqueous
silica–alumina hybrid nanofluid. Chinese Journal of Physics 56(5):
2465-2478.
Sajid, M.U. & Ali, H.M. 2019. Recent advances in
application of nanofluids in heat transfer devices: A critical review. Renewable
and Sustainable Energy Reviews 103: 556-592.
Sajid, M.U. & Ali, H.M. 2018. Thermal conductivity
of hybrid nanofluids: A critical review. International Journal of Heat and
Mass Transfer 126: 211-234.
Sakiadis, B.C. 1961. Boundary-layer behaviour on
continuous solid surfaces: I. Boundary layer equations for two-dimensional and
axisymmetric flow. American Institute of Chemical Engineers Journal 7(1): 26-28.
Sarkar, J., Ghosh, P. & Adil, A. 2015. A review on
hybrid nanofluids: Recent research, development and applications. Renewable
and Sustainable Energy Reviews 43: 164-177.
Shampine, L.F., Gladwell, I. & Thompson, S. 2003. Solving
ODEs with MATLAB. Cambridge University Press. Cambridge: Cambridge
University Press.
Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati,
G.H.R., Mamat, R. & Najafi, G. 2016. Recent progress on hybrid nanofluids
in heat transfer applications: A comprehensive review. International
Communications in Heat and Mass Transfer 78: 68-79.
Soid, S.K., Ishak, A. & Pop, I. 2018. MHD
stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid
with a slip boundary. Sains Malaysiana 47(11): 2907-2916.
Subhani, M. & Nadeem, S. 2018. Numerical analysis
of micropolar hybrid nanofluid. Applied Nanoscience 9: 447-459.
Sundar, L.S., Sharma, K.V., Singh, M.K. & Sousa,
A.C.M. 2017. Hybrid nanofluids preparation, thermal properties, heat transfer
and friction factor – A review. Renewable and Sustainable Energy Reviews 68: 185-198.
Tiwari, R.K. & Das, M.K. 2007. Heat transfer
augmentation in a two-sided lid-driven differentially heated square cavity
utilizing nanofluids. International Journal of Heat and Mass Transfer 50(9-10): 2002-2018.
Usman, M., Hamid, M., Zubair, T., Haq, R.U. &
Wang, W. 2018. Cu-Al2O3/Water hybrid nanofluid through a
permeable surface in the presence of nonlinear radiation and variable thermal
conductivity via LSM. International Journal of Heat and Mass Transfer 126: 1347-1356.
Waini, I., Ishak, A. & Pop, I. 2019a. Unsteady
flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer 136: 288-297.
Waini, I., Ishak, A. & Pop, I.
2019b. Flow and heat transfer along a permeable stretching/shrinking curved
surface in a hybrid nanofluid. Physica Scripta 94(10): 105219.
Waini, I., Ishak, A. & Pop, I.
2019c. Hybrid nanofluid flow and heat transfer over a nonlinear permeable
stretching/shrinking surface. International Journal of Numerical Methods for
Heat & Fluid Flow: https://doi.org/10.1108/HFF-01-2019-0057.
Waini, I., Ishak, A. & Pop, I.
2019d. Hybrid nano fluid flow and heat transfer past a vertical thin needle
with prescribed surface heat flux. International Journal of Numerical
Methods for Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0277.
Waini, I., Ishak, A. & Pop, I.
2019e. On the stability of the flow and heat transfer over a moving thin needle
with prescribed surface heat flux. Chinese Journal of Physics 60:
651-658.
Wang, C.Y. 2008. Stagnation flow towards a shrinking
sheet. International Journal of Non-Linear Mechanics 43(5): 377-382.
Wang, C.Y. 1990. Liquid film on an unsteady stretching
surface. Quarterly of Applied Mathematics 48(4): 601-610.
Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J.
2006. The effect of transpiration on self-similar boundary layer flow over
moving surfaces. International Journal of Engineering Science 44(11-12):
730-737.
Yih, K.A. 1998. The effect of uniform suction/blowing
on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta
Mechanica 130(3-4): 147-158.
Yousefi, M., Dinarvand, S., Eftekhari Yazdi, M. &
Pop, I. 2018. Stagnation-point flow of an aqueous titania-copper hybrid
nanofluid toward a wavy cylinder. International Journal of Numerical Methods
for Heat and Fluid Flow 28(7): 1716-1735.
Zaimi, W.M.K.A. & Ishak, A. 2012. Stagnation flow
of a micropolar fluid towards a vertical permeable surface with prescribed heat
flux. Sains Malaysiana 41(10): 1263-1270.
*Corresponding author: anuar_mi@ukm.edu.my
|