Sains Malaysiana 51(10)(2022):
3251-3259
http://doi.org/10.17576/jsm-2022-5110-11
Hydrogen Production from
Water Splitting using TiO2/CoS Composite
Photocatalyst
(Penghasilan Hidrogen daripada Pemisahan Air menggunakan Komposit Fotomangkin TiO2/CoS)
MUTIA AGUSTINA1, SITI NURUL FALAEIN MORIDON2,
AMILIA LINGGAWATI1, KHUZAIMAH ARIFIN2,*,
LORNA JEFFERY MINGGU2 & MOHAMMAD B. KASSIM3
1Department
of Chemistry, Faculty of Mathematic and Natural Science, University of Riau, Kampus Binawidya, Km 12.5, Simpang Baru, Pekanbaru Riau, Indonesia
2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department of Chemical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
8 February 2022/Accepted: 1 June 2022
Abstract
Photocatalytic water splitting reaction
has been considered an ideal method for hydrogen generation. In this study,
a composite of TiO2/CoS photocatalyst
prepared by hydrothermal synthesis method assisted by ball milling crushing
process was used. The TiO2/CoS composites
prepared with three variation compositions of 90/10, 80/20, and 70/30 were
named M-10, M-20, and M-30, respectively. Field-emission scanning electron
microscopy images showed that the morphologies of the composites were porous
and uniform of nanospheres. The X-ray diffraction and energy dispersive
spectroscopy analyses confirmed the presence of CoS in the composites. Ultraviolet–visible absorption characterization demonstrated
the smallest bandgap value of approximately 2.72 eV presented by sample M-30
with the photocurrent density of 0.32 mA cm−2 at 0.9 V vs. Ag/AgCl. The presence of CoS in
this study could increase the PC hydrogen generation of TiO2 by
nearly 2.5 times. The composites forming a p-n heterojunction between TiO2 and CoS could prevent electron–hole recombination and
increase the overall photoactivity of TiO2.
Keywords:
Composite; hydrogen production; hydrothermal; water splitting
Abstrak
Tindak balas pemisahan air secara fotokatalisis telah dianggap sebagai kaedah yang ideal untuk penjanaan hidrogen dengan menggunakan semikonduktor sebagai fotomangkin. Dalam kajian ini, komposit fotomangkin TiO2/CoS yang disediakan melalui kaedah sintesis hidroterma dibantu oleh proses penghancuran penggilingan bebola telah digunakan. Komposit TiO2/CoS yang disediakan dengan tiga komposisi variasi 90/10, 80/20 dan 70/30 masing-masing dinamakan M-10, M-20 dan M-30. Imej mikroskopi elektron pengimbasan pelepasan medan menunjukkan bahawa morfologi komposit adalah berliang dan nanosfera yang seragam. Analisis difraksi sinar-X dan spektroskopi penyebaran tenaga mengesahkan kehadiran CoS dalam komposit. Pencirian penyerapan cahaya ultraungu-nampak menunjukkan nilai celah jalur terkecil kira-kira 2.72 eV
yang ditunjukkan oleh sampel M-30 dengan ketumpatan arus foto 0.32 mA cm−2 pada 0.9 V lwn. Ag/AgCl. Kehadiran CoS dalam kajian ini boleh meningkatkan penjanaan hidrogen PC TiO2 sebanyak hampir 2.5 kali ganda. Komposit yang membentuk hetero-simpang p-n antara TiO2 dan CoS boleh mengurangkan penggabungan semula lohong dan elektron serta meningkatkan keseluruhan fotoaktiviti TiO2.
Kata kunci: Hidroterma; komposit; pemisahan air; pengeluaran hidrogen
REFERENCES
Arifin, K., Yunus, R.M., Minggu,
L.J. & Kassim, M.B. 2021. Improvement of TiO2 nanotubes
for photoelectrochemical water splitting: Review. International
Journal Hydrogen Energy 46(7): 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
Dincer, I. & Acar, C. 2015. Review
and evaluation of hydrogen production methods for better sustainability, I. International Journal Hydrogen Energy 40: 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
Dincer, I. & Bicer, Y. 2018.
Photoelectrochemical energy conversion. In Comprehensive Energy
Systems, Vol. 1. Energy Fundamental, edited by Ibrahim Dincer. pp. 816-855. https://doi.org/10.1016/B978-0-12-809597-3.00438-7
Franchi, G., Capocelli, M., De
Falco, M., Piemonte, V. & Barba, D. 2020. Hydrogen production via steam
reforming: A critical analysis of MR and RMM technologies. Membranes 10:
10. https://doi.org/10.3390/membranes10010010
Guo, W., Zhang, X., Yu, R., Que,
M., Zhang, Z., Wang, Z., Hua, Q., Wang, C., Wang, Z.L. & Pan, C. 2015. CoS
NWs/Au hybridized networks as efficient counter electrodes for flexible
sensitized solar cells. Advanced Energy Materials 5: 1500141. https://doi.org/10.1002/aenm.201500141
Hankin, A.,
Bedoya-Lora, F.E., Alexander, J.C., Regoutz, A. & Kelsall, G.H. 2019. Flat band potential determination: Avoiding
the pitfalls. Journal
of Materials Chemistry A 7: 26162-26176. https://doi.org/10.1039/C9TA09569A
Herkert, E., Sterl, F.,
Strohfeldt, N., Walter, R. & Giessen, H. 2020. Low-cost hydrogen
sensor in the PPM range with purely optical readout. ACS Sensors 5(4): 978-983. https://doi.org/10.1021/acssensors.9b02314
Liu, Y., Wang, Z. & Huang, W.
2016. Influences of TiO2 phase structures on the structures and
photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Applied Surface Science 389: 760-767. https://doi.org/10.1016/j.apsusc.2016.07.173.
Liu, C., Yang, Y., Lie, J. &
Chen, S. 2018. Phase transformation synthesis of TiO2/CdS
heterojunction film with high visible-light photoelectrochemical activity. Nanotechnology 29: 265401. https://doi.org/10.1088/1361-6528/aabd6e
Makuła, P., Pacia, M. & Macyk, W. 2018. How to correctly
determine the band gap energy of modified semiconductor photocatalysts based on
UV–Vis spectra. The Journal of Physical Chemistry Letters 9(23):
6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892
Molinari, R., Lavorato, C.,
Argurio, P., Szymański, K., Darowna, D. & Mozia, S. 2019. Overview
of photocatalytic membrane reactors in organic synthesis, energy storage and
environmental applications. Catalysts 9: 239. https://doi.org/10.3390/catal9030239
Moridon, S.N.F., Salehmin, M.N.I.,
Arifin, K., Minggu, L.J. & Kassim, M.B. 2021. Synthesis of cobalt
oxide on FTO by hydrothermal method for photoelectrochemical water splitting
application. Applied Sciences 11: 3031.
https://doi.org/10.3390/app11073031
Moridon, S.N.F., Salehmin, M.I.,
Mohamed, M.A., Arifin, K., Minggu, L.J. & Kassim, M.B. 2019. Cobalt
oxide as photocatalyst for water splitting: Temperature-dependent phase
structures. International Journal Hydrogen Energy 44: 25495-25504. https://doi.org/10.1016/j.ijhydene.2019.08.075
Niu, Y., Li, F., Yang, K., Wu, Q., Xu, P. & Wang, R.
2018. Highly efficient photocatalytic hydrogen on CoS/TiO2 photocatalysts from aqueous methanol solution.
International Journal of Photoenergy 2018: Article ID. 8143940. https://doi.org/10.1155/2018/8143940
Ouyang, W., Liu, S., Yao, K., Zhao,
L., Cao, L., Jiang, S. & Hou, H. 2018. Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic
properties. Composites Communications 9: 76-80. https://doi.org/10.1016/j.coco.2018.06.006
Rambey, M.N., Arifin, K., Minggu,
L.J. & Kassim, M.B. 2020. Cobalt sulfide
as photoelectrode of photoelectrochemical hydrogen
generation from water. Sains Malaysiana
49(12): 3117-3123. http://dx.doi.org/10.17576/jsm-2020-4912-24
Rosen, M.A. & Koohi-Fayegh, S.
2016. The prospects for hydrogen as an energy carrier: An overview of
hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment 1: 10-29. https://doi.org/10.1007/s40974-016-0005-z
Scott, K. 2019. Chapter 1:
Introduction to electrolysis, electrolysers and hydrogen production, in
electrochemical methods for hydrogen production. The Royal Society of
Chemistry’s Books pp. 1-27. https://doi.org/10.1039/9781788016049-00001
Wang, Q., An, N., Bai, Y., Hang,
H., Li, J., Lu, X., Liu, Y., Wang, F., Li, Z. & Lei, Z. 2013. High
photocatalytic hydrogen production from methanol aqueous solution using the
photocatalysts CuS/TiO2. International Journal of Hydrogen Energy 38(25): 10739-10745. https://doi.org/10.1016/j.ijhydene.2013.02.131
*Corresponding author;
email: khuzaim@ukm.edu.my
|