Sains Malaysiana 51(10)(2022):
3285-3294
http://doi.org/10.17576/jsm-2022-5110-14
Biosensor DNA Voltametri Berasaskan Nanozarah Emas Bersalut Elektrod Bercetak Skrin Karbon untuk Pengesanan DNA Organisma Terubah
Suai Genetik (GMO)
(Voltammetric DNA Biosensor based on Gold
Nanoparticles-Coated Carbon Screen-Printed Electrode for Genetically Modified Organism (GMO)
Detection)
NAHDYA
KHAIRANI1, HAN YIH LAU2, ZAMRI ISHAK2, LEE
YOOK HENG3,* & LING LING TAN3
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian
Agriculture Research Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Pusat
Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:15
March 2022/Accepted: 23 May 2022
Abstrak
Genosensor voltametri untuk pengesanan DNA organisma
terubah suai genetik (GMO) telah dibangunkan berasaskan nanozarah emas (AuNPs)
dan elektrod pes karbon bercetak skrin (SPE). AuNPs telah dipegunkan pada SPE
melalui kaedah pertumbuhan perantara benih dan dicirikan dengan mikroskop
elektron pengimbasan (SEM). 6-Mercapto-1-heksanol (MCH) telah digunakan untuk
membentuk lapisan mono prob DNA rantai tunggal (ssDNA) pada SPE terubah suai
AuNPs (AuNPs-SPE). Biosensor GMO telah dioptimumkan secara elektrokimia
menggunakan oligonukleotida sintetik melalui teknik voltametri denyutan
pembezaan (DPV). Biosensor GMO yang dioptimumkan kemudiannya digunakan untuk
menganalisis sampel sebenar bagi pengesanan khusus urutan DNA dalam virus mozek
kubis bunga, iaitu gen CaMV 35S. Isyarat penghibridan DNA dipantau berdasarkan
arus puncak pengoksidaan penunjuk redoks asid monosulfonat antrakuinona (AQMS)
semasa interkalasinya ke dalam dupleks DNA. Biosensor GMO memberi rangsangan
secara linear kepada DNA terubah suai genetik (GM) antara 0.1 nM dan 300.0 nM
dan had pengesanan diperoleh pada 0.06 nM. Sisihan piawai relatif (RSD)
kebolehulangan biosensor GMO dianggarkan pada 6.7-7.8%. Biosensor GMO
berasaskan AuNPs mempamerkan prestasi pengesanan DNA yang lebih baik daripada segi
julat linear dinamik dan had pengesanan berbanding dengan biosensor GMO
elektrokimia yang dilaporkan sebelum ini. Biosensor DNA elektrokimia ini menyediakan satu platform pengesanan pakai buang untuk aplikasi dalam ujian bahan GMO.
Kata kunci: Biosensor
DNA; elektrod pes karbon bercetak skrin; nanozarah emas; organisma terubah suai genetik; voltametri denyutan pembezaan
Abstract
A voltammetric genosensor for detection of genetically modified
organism (GMO) DNA has been developed based on gold nanoparticles (AuNPs) and screen-printed carbon paste electrode (SPE).
The AuNPs was immobilized on the SPE via seed mediated growth method and
characterized with scanning electron microscopy (SEM). 6-Mercapto-1-hexanol
(MCH) has been used to form a well aligned monolayer of single-stranded DNA
(ssDNA) probes on the AuNPs-modified SPE (AuNPs-SPE). The GMO biosensor has
been electrochemically optimized using synthetic oligonucleotides via
differential pulse voltammetry (DPV) technique. The optimized GMO biosensor was
then applied to real samples analysis for specific detection of DNA sequence in cauliflower mosaic virus i.e., CaMV 35S gene. DNA hybridization signal was monitored
based on oxidation peak current of anthraquinone monosulfonic acid (AQMS) redox indicator during its intercalation into DNA duplex. The GMO
biosensor response linearly to genetically modified (GM) DNA between 0.1 nM and 300.0 nM and the limit of
detection was obtained at 0.06 nM. The
reproducibility relative standard deviation (RSD) of the GMO biosensor was
estimated at 6.7-7.8%. The AuNPs-based GMO biosensor exhibited improved DNA
sensing performance with respect to dynamic linear range and detection limit
compared to previously reported electrochemical GMO biosensor. The proposed
electrochemical DNA biosensor for GMO provides a disposable sensing platform
for the application in GMO material testing.
Keywords: Differential pulse
voltammetry; DNA biosensor; genetically modified organism; gold nanoparticles; screen-printed carbon
paste electrode
REFERENCES
Akkapinto,
C., Subannajui, K., Poo-arporn,
Y. & Poo-arporn, R.P. 2021. Disposable electrochemical
sensor for food colorants detection by reduced graphene oxide and methionine
film modified screen printed carbon electrode. Molecules 26(8): 2312.
Alizar, U., Lee,
Y.H., Musa, A., Lau, H., Zamri, I. & Tan, L.L. 2014. A regenerable screen-printed DNA biosensor based on acrylic
microsphere-gold nanoparticle composite for genetically modified soybean
determination. Sensors and Actuators B 190:
694-701.
Antuña-Jiménez, D.,
González-García, M.B., Hernández-Santos, D. & Fanjul-Bolado,
P. 2020. Screen- printed electrodes modified with metal nanoparticles for small
molecule sensing. Biosensors 10(9): 1-22.
Busbee, B.D., Obare, S.O. & Murphy,
C.J. 2003. An improved synthesis of high-aspect-ratio gold nanorods. Advanced
Materials 15: 414-416.
Carpini, G.,
Lucarelli, F., Marrazza, G. & Mascini, M. 2004. Oligonucleotide-modified
screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosensors
and Bioelectronics 20: 167-175.
Cesewski, E. & Johnson, B.N. 2020. Electrochemical biosensors
for pathogen detection. Biosensors and Bioelectronics 159: 112214.
Chiorcea-Paquim, A.M. & Oliveira-Bett, A.M. 2021. DNA
electrochemical biosensors for in situ probing of pharmaceutical drug oxidative DNA damage. Sensors 21(4):
1125.
Dharuman,
V. & Hahn, J.H. 2007. Effect of short chain
alkane diluents on the label free electrochemical DNA hybridization
discrimination at the HS-ssDNA/diluent binary mixed monolayer in presence of
cationic intercalators. Sensors and Actuators B: Chemical 127: 536-544.
Duwensee, H., Mix, M., Broer,
I. & Flechsig, G.U. 2009. Electrochemical
detection of modified maize gene sequences by multiplexed labeling with osmium
tetroxide bipyridine. Electrochemistry Communications 11: 1487-1491.
Han, S., Liu, W., Zheng, M. &
Wang, R. 2020. Label-free and ultrasensitive electrochemical DNA biosensor
based on urchinlike carbon nanotube-gold nanoparticle nanoclusters. Analytical
Chemistry 92(7): 4780-4787.
Herne, T.M. & Tarlov, M.J. 1997. Characterization of DNA probes immobilized
on gold surfaces. Journal of the American Chemical Society 119: 8916-8920.
Karaboduk, K. 2021. Modification of screen-printed gold electrode
with 1,4-dithiothreitol: Application to sensitive voltammetric determination of Sudan II. Food Quality and Safety 5: 1-9.
Koswakka, S.O. 2004. Self-assembly monolayer resist for electron beam lithography.
Thesis MSc. Purdue University (Unpublished).
Lucarelli, F., Tombelli,
S., Minunni, M., Marrazza, G. & Mascini, M. 2008. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta 609: 139-159.
Lucarelli, F., Palchetti,
I., Marrazza, G. & Mascini, M. 2002. Electrochemical DNA biosensor as a screening tool for the
detection of toxicants in water and wasewater samples. Talanta 56: 949-957.
Mariotti,
E., Minunni, M. & Mascini, M. 2002. Surface plasmon resonance biosensor for genetically modified organisms detection. Analytica Chimica Acta 453: 165-172.
Mannelli, I., Minunni, M., Tombelli, S. & Mascini, M. 2003. Quartz crystal microbalance (QCM) affinity
biosensor for genetically modified organisms (GMOs) detection. Biosensors and Bioelectronics 18:
129-140.
Meric,
B., Kerman, K., Marrazza, G., Palchetti, I., Mascini, M. & Ozsoz, M. 2004. Disposable genosensor,
a new tool for the detection of NOS-terminator, a genetic element present in
GMOs. Food Control 15(8): 621-626.
Nadal, A., Coll, A., La Paz, J.L., Esteve, T. & Pla, M. 2006. A
new PCR–CGE (size and color) method for simultaneous detection of
genetically modified maize events. Electrophoresis 27: 3879-3888.
Pellas, V., Hu, D., Mazouzi,
Y., Mimoun, Y., Blanchard, J., Guibeit,
C., Salmain, M. & Boujday,
S. 2020. Gold nanorods for LSPR biosensing: Synthesis, coating by silica, and
bioanalytical applications. Biosensors 10(10): 146.
Rabiei, M., Mehdizadeh, M., Rastegar, H., Vahidi, H. & Alebouyah, M.
2013. Detection of genetically modified maize in processed foods sold
commercially in Iran by qualitative PCR. Iranian Journal of Pharmaceutical Resarch 12(1): 25-30.
Raju, V.M., Bhavana, V., Gayathiri,
G.K., Suryan, S., Reddy, R., Reddy, N., Ravijumar, C.R. & Santosh, M.S.
2020. A novel disposable electrochemical
DNA biosensor for the rapid detection of Bacillus thuringiensis. Microchemical
Journal 159: 297-307.
Shokere, L.A., Holden, M.J. & Ronald, J.G. 2009.
Comparison of fluorometric and spectrophotometric DNA quantification for
real-time quantitative PCR of degraded DNA. Food Control 20: 391-401.
Wang, M.Q., Du, X.Y., Liu, Y., Sun, Q. & Jiang, X.C.
2008. DNA biosensor prepared by electrodeposited Pt-nanoparticles for the
detection of specific deoxyribonucleic acid sequence in genetically modified
soybean. Chinese Journal of Analytical Chemistry 36: 890-894.
Wong, E.L.S., Mearns, F.J. &
Gooding, J.J. 2005. Further development of an electrochemical DNA hybridization
biosensor based on long-range electron transfer. Sensors and Actuators B:
Chemical 111: 515-521.
Wu, Q., Zhang, Y., Yang, Q., Yuan,
N. & Zhang, W. 2019. Review of electrochemical DNA biosensors for detecting
food borne pathogens. Sensors 19(22): 4916.
Wujung, J., Shirong, J. & Yufa, P. 2004. Comparison of labeling policy of genetically
modified products in different countries and territories. Journal of Agricultural Biotechnology 12: 1-7.
Zhang, J., Kambayashi,
M. & Oyama, M. 2004. A novel electrode surface
fabricated by directly attaching gold nanospheres and nanorods onto indium tin
oxide substrate with a seed mediated growth process. Electrochemistry
Communications 6: 683-688.
Zhang, W., Yang, T.,
Jiang, C. & Jiao, K. 2008. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film
modified electrode. Applied Surface
Science 254: 4750-4756.
*Corresponding author;
email: leeyookheng@yahoo.co.uk
|