Sains Malaysiana 51(10)(2022): 3285-3294

http://doi.org/10.17576/jsm-2022-5110-14

 

Biosensor DNA Voltametri Berasaskan Nanozarah Emas Bersalut Elektrod Bercetak Skrin Karbon untuk Pengesanan DNA Organisma Terubah Suai Genetik (GMO)

(Voltammetric DNA Biosensor based on Gold Nanoparticles-Coated Carbon Screen-Printed Electrode for Genetically Modified Organism (GMO) Detection)

 

NAHDYA KHAIRANI1, HAN YIH LAU2, ZAMRI ISHAK2, LEE YOOK HENG3,* & LING LING TAN3

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Malaysian Agriculture Research Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan, Malaysia

3Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:15 March 2022/Accepted: 23 May 2022

 

Abstrak

Genosensor voltametri untuk pengesanan DNA organisma terubah suai genetik (GMO) telah dibangunkan berasaskan nanozarah emas (AuNPs) dan elektrod pes karbon bercetak skrin (SPE). AuNPs telah dipegunkan pada SPE melalui kaedah pertumbuhan perantara benih dan dicirikan dengan mikroskop elektron pengimbasan (SEM). 6-Mercapto-1-heksanol (MCH) telah digunakan untuk membentuk lapisan mono prob DNA rantai tunggal (ssDNA) pada SPE terubah suai AuNPs (AuNPs-SPE). Biosensor GMO telah dioptimumkan secara elektrokimia menggunakan oligonukleotida sintetik melalui teknik voltametri denyutan pembezaan (DPV). Biosensor GMO yang dioptimumkan kemudiannya digunakan untuk menganalisis sampel sebenar bagi pengesanan khusus urutan DNA dalam virus mozek kubis bunga, iaitu gen CaMV 35S. Isyarat penghibridan DNA dipantau berdasarkan arus puncak pengoksidaan penunjuk redoks asid monosulfonat antrakuinona (AQMS) semasa interkalasinya ke dalam dupleks DNA. Biosensor GMO memberi rangsangan secara linear kepada DNA terubah suai genetik (GM) antara 0.1 nM dan 300.0 nM dan had pengesanan diperoleh pada 0.06 nM. Sisihan piawai relatif (RSD) kebolehulangan biosensor GMO dianggarkan pada 6.7-7.8%. Biosensor GMO berasaskan AuNPs mempamerkan prestasi pengesanan DNA yang lebih baik daripada segi julat linear dinamik dan had pengesanan berbanding dengan biosensor GMO elektrokimia yang dilaporkan sebelum ini. Biosensor DNA elektrokimia ini menyediakan satu platform pengesanan pakai buang untuk aplikasi dalam ujian bahan GMO.

 

Kata kunci: Biosensor DNA; elektrod pes karbon bercetak skrin; nanozarah emas; organisma terubah suai genetik; voltametri denyutan pembezaan

 

Abstract

A voltammetric genosensor for detection of genetically modified organism (GMO) DNA has been developed based on gold nanoparticles (AuNPs) and screen-printed carbon paste electrode (SPE). The AuNPs was immobilized on the SPE via seed mediated growth method and characterized with scanning electron microscopy (SEM). 6-Mercapto-1-hexanol (MCH) has been used to form a well aligned monolayer of single-stranded DNA (ssDNA) probes on the AuNPs-modified SPE (AuNPs-SPE). The GMO biosensor has been electrochemically optimized using synthetic oligonucleotides via differential pulse voltammetry (DPV) technique. The optimized GMO biosensor was then applied to real samples analysis for specific detection of DNA sequence in cauliflower mosaic virus i.e., CaMV 35S gene. DNA hybridization signal was monitored based on oxidation peak current of anthraquinone monosulfonic acid (AQMS) redox indicator during its intercalation into DNA duplex. The GMO biosensor response linearly to genetically modified (GM) DNA between 0.1 nM and 300.0 nM and the limit of detection was obtained at 0.06 nM. The reproducibility relative standard deviation (RSD) of the GMO biosensor was estimated at 6.7-7.8%. The AuNPs-based GMO biosensor exhibited improved DNA sensing performance with respect to dynamic linear range and detection limit compared to previously reported electrochemical GMO biosensor. The proposed electrochemical DNA biosensor for GMO provides a disposable sensing platform for the application in GMO material testing.

 

Keywords: Differential pulse voltammetry; DNA biosensor; genetically modified organism; gold nanoparticles; screen-printed carbon paste electrode

 

REFERENCES

Akkapinto, C., Subannajui, K., Poo-arporn, Y. & Poo-arporn, R.P. 2021. Disposable electrochemical sensor for food colorants detection by reduced graphene oxide and methionine film modified screen printed carbon electrode. Molecules 26(8): 2312.

Alizar, U., Lee, Y.H., Musa, A., Lau, H., Zamri, I. & Tan, L.L. 2014. A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination. Sensors and Actuators B 190: 694-701.

Antuña-Jiménez, D., González-García, M.B., Hernández-Santos, D. & Fanjul-Bolado, P. 2020. Screen- printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors 10(9): 1-22.

Busbee, B.D., Obare, S.O. & Murphy, C.J. 2003. An improved synthesis of high-aspect-ratio gold nanorods. Advanced Materials 15: 414-416.

Carpini, G., Lucarelli, F., Marrazza, G. & Mascini, M. 2004. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosensors and Bioelectronics 20: 167-175.

Cesewski, E. & Johnson, B.N. 2020. Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics 159: 112214.

Chiorcea-Paquim, A.M. & Oliveira-Bett, A.M. 2021. DNA electrochemical biosensors for in situ probing of pharmaceutical drug oxidative DNA damage. Sensors 21(4): 1125.

Dharuman, V. & Hahn, J.H. 2007. Effect of short chain alkane diluents on the label free electrochemical DNA hybridization discrimination at the HS-ssDNA/diluent binary mixed monolayer in presence of cationic intercalators. Sensors and Actuators B: Chemical 127: 536-544.

Duwensee, H., Mix, M., Broer, I. & Flechsig, G.U. 2009. Electrochemical detection of modified maize gene sequences by multiplexed labeling with osmium tetroxide bipyridine. Electrochemistry Communications 11: 1487-1491.

Han, S., Liu, W., Zheng, M. & Wang, R. 2020. Label-free and ultrasensitive electrochemical DNA biosensor based on urchinlike carbon nanotube-gold nanoparticle nanoclusters. Analytical Chemistry 92(7): 4780-4787.

Herne, T.M. & Tarlov, M.J. 1997. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society 119: 8916-8920.

Karaboduk, K. 2021. Modification of screen-printed gold electrode with 1,4-dithiothreitol: Application to sensitive voltammetric determination of Sudan II. Food Quality and Safety 5: 1-9.

Koswakka, S.O. 2004. Self-assembly monolayer resist for electron beam lithography. Thesis MSc. Purdue University (Unpublished).

Lucarelli, F., Tombelli, S., Minunni, M., Marrazza, G. & Mascini, M. 2008. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta 609: 139-159.

Lucarelli, F., Palchetti, I., Marrazza, G. & Mascini, M. 2002. Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wasewater samples. Talanta 56: 949-957.

Mariotti, E., Minunni, M. & Mascini, M. 2002. Surface plasmon resonance biosensor for genetically modified organisms detection. Analytica Chimica Acta 453: 165-172.

Mannelli, I., Minunni, M., Tombelli, S. & Mascini, M. 2003. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. Biosensors and Bioelectronics 18: 129-140.

Meric, B., Kerman, K., Marrazza, G., Palchetti, I., Mascini, M. & Ozsoz, M. 2004. Disposable genosensor, a new tool for the detection of NOS-terminator, a genetic element present in GMOs. Food Control 15(8): 621-626.

Nadal, A., Coll, A., La Paz, J.L., Esteve, T. & Pla, M. 2006. A new PCR–CGE (size and color) method for simultaneous detection of genetically modified maize events. Electrophoresis 27: 3879-3888.

Pellas, V., Hu, D., Mazouzi, Y., Mimoun, Y., Blanchard, J., Guibeit, C., Salmain, M. & Boujday, S. 2020. Gold nanorods for LSPR biosensing: Synthesis, coating by silica, and bioanalytical applications. Biosensors 10(10): 146.

Rabiei, M., Mehdizadeh, M., Rastegar, H., Vahidi, H. & Alebouyah, M. 2013. Detection of genetically modified maize in processed foods sold commercially in Iran by qualitative PCR. Iranian Journal of Pharmaceutical Resarch 12(1): 25-30.

Raju, V.M., Bhavana, V., Gayathiri, G.K., Suryan, S., Reddy, R., Reddy, N., Ravijumar, C.R. & Santosh, M.S. 2020. A novel disposable electrochemical DNA biosensor for the rapid detection of Bacillus thuringiensis. Microchemical Journal 159: 297-307.

Shokere, L.A., Holden, M.J. & Ronald, J.G. 2009. Comparison of fluorometric and spectrophotometric DNA quantification for real-time quantitative PCR of degraded DNA. Food Control 20: 391-401.

Wang, M.Q., Du, X.Y., Liu, Y., Sun, Q. & Jiang, X.C. 2008. DNA biosensor prepared by electrodeposited Pt-nanoparticles for the detection of specific deoxyribonucleic acid sequence in genetically modified soybean. Chinese Journal of Analytical Chemistry 36: 890-894.

Wong, E.L.S., Mearns, F.J. & Gooding, J.J. 2005. Further development of an electrochemical DNA hybridization biosensor based on long-range electron transfer. Sensors and Actuators B: Chemical 111: 515-521.

Wu, Q., Zhang, Y., Yang, Q., Yuan, N. & Zhang, W. 2019. Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors 19(22): 4916.

Wujung, J., Shirong, J. & Yufa, P. 2004. Comparison of labeling policy of genetically modified products in different countries and territories. Journal of Agricultural Biotechnology 12: 1-7.

Zhang, J., Kambayashi, M. & Oyama, M. 2004. A novel electrode surface fabricated by directly attaching gold nanospheres and nanorods onto indium tin oxide substrate with a seed mediated growth process. Electrochemistry Communications 6: 683-688.

Zhang, W., Yang, T., Jiang, C. & Jiao, K. 2008. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode. Applied Surface Science 254: 4750-4756.

 

*Corresponding author; email: leeyookheng@yahoo.co.uk

 

 

 

 

 

previous