Sains Malaysiana 51(10)(2022): 3295-3306

http://doi.org/10.17576/jsm-2022-5110-15

 

Kesan Kepekatan Fukoidan dan Tempoh Penapaian terhadap Pencirian Fizikokimia Kombucha Diperkuat dengan Fukoidan

(The Effect of Fucoidan Concentrations and Fermentation Days on the Physicochemical Characterisation of Kombucha Fortified with Fucoidan)

 

NURUL IZZUANI MOHD ISA1, NURUL NAJIHA AIN IBRAHIM1, SITI NUR JELITA SABRAN1, NOOR-SOFFALINA SOFIAN-SENG1,2, LIM SENG JOE1,2, HAFEEDZA ABDUL RAHMAN1,2, WAN AIDA WAN MUSTAPHA1,2 & NOORUL SYUHADA MOHD RAZALI1,2*

 

1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Pusat Inovasi Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:14 March 2022/Accepted: 4 June 2022

 

Abstrak

Kombucha adalah sejenis minuman yang terhasil daripada penapaian teh manis dengan menggunakan kultur simbiotik bakteria dan yis. Fukoidan merupakan sejenis polisakarida fungsian daripada rumpai laut yang dipercayai mempunyai kesan kesihatan yang baik. Penyelidikan ini telah dijalankan bertujuan untuk mengetahui kesan kepekatan fukoidan (0, 0.25, 0.5, 0.75 dan 1.00 mg/mL) dan hari penapaian yang berbeza terhadap sifat fizikokimia (pH, jumlah pepejal terlarut (TSS), warna, kandungan fenol jumlah (TPC), kandungan flavonoid jumlah (TFC), kandungan gula, kandungan alkohol dan keasidan boleh titrat (TA)) serta kualiti kimia kombucha yang diperkaya dengan fukoidan. Nilai pH sampel kombucha menurun dengan ketara (p<0.05) apabila tempoh penapaian berpanjangan. Penambahan fukoidan mempengaruhi warna L *, a *, dan b * tanpa corak tertentu. Tempoh penapaian yang lebih lama meningkatkan kecerahan, namun mengurangkan kemerahan dan kekuningan semua sampel kombucha. Sementara itu, kandungan TSS dan gula sampel kombucha berkadar songsang dengan tempoh penapaian, kecuali bagi kombucha (0.75 mg/mL) yang dicatatkan lebih tinggi (p <0.05) nilai TSS daripada kombucha (0.25 mg/mL fukoidan) pada hari ke 14. Bagaimanapun, tiada kesan signifikan (p>0.05) penambahan kombucha yang diperkuat dengan fukoidan terhadap gula. Secara keseluruhan, jumlah kandungan fenol dan flavonoid meningkat(p<0.05) dengan penambahan fukoidan dan tempoh penapaian, manakala peratusan TA dan kandungan etanol kombucha meningkat dengan tempoh penapaian berpanjangan. Kesimpulannya, sampel kombucha mengalami perubahan fizikokimia dan peningkatan jumlah kandungan fenol dan flavonoid selari dengan tempoh penapaian. Kajian ini menunjukkan bahawa fukoidan berpotensi digunakan sebagai bahan berfungsi dalam minuman kombucha.

 

Kata kunci:  Antioksidan; fukoidan; minuman kombucha; teh 

 

Abstract

Kombucha is a beverage produced by fermentation of sweet tea using symbiotic cultures of bacteria and yeast. Fucoidan is a functional polysaccharide from seaweeds which have been believed to have beneficial health effect. This study aimed to determine the effect of different fucoidan concentrations (0, 0.25, 0.5, 0.75, and 1.00 mg/mL) and fermentation days on the physicochemical properties (pH, total soluble solids (TSS), colour, total phenolic content (TPC), total flavonoid content (TFC), sugar content, alcohol content and titratable acidity (TA)) of kombucha fortified with fucoidan. The pH value of kombucha samples decreased significantly (p <0.05) when the fermentation period was prolonged. The addition of fucoidan affects the properties of L*, a*, and b* of kombucha without a specific trend. In general, longer fermentation period increased brightness but decrease redness and yellowness of all kombucha samples. Meanwhile TSS and sugar content of kombucha samples were inversely proportional with the fermentation period, except for kombucha with 0.75 mg/mL fucoidan which recorded significantly higher (p <0.05) TSS values than kombucha with 0.25 mg/mL fucoidan on day 14. However, there was no significant (p>0.05) of sugar content of fortified kombucha with fucoidan. Overall, the total phenolic and flavonoid content increased significantly (p<0.05) with the addition of fucoidan and fermentation time, meanwhile the percentage of TA and ethanol content of kombucha increased with the prolonged fermentation period. In conclusion, kombucha samples undergo physicochemical changes with increased total phenolic and flavonoid content along with the fermentation period. This study shows that fucoidan has the potential to be applied as a functional ingredient in kombucha drinks.

 

Keywords: Antioxidant; fucoidan; kombucha beverage; tea 

 

REFERENCES

Alderson, H., Liu, C., Mehta, A., Gala, H.S., Mazive, N.R., Chen, Y. & Serventi, L. 2021. Sensory profile of kombucha brewed with New Zealand ingredients by focus group and word clouds. Fermentation 7(3): 100.

AOAC. 2005. AOAC Official Method 947.05. Acidity of Milk, Titrimetic Method.  American Organization of Analytical Chemist International. 

AOAC. 1990. AOAC Official Method 932.12. Solids (Soluble) in Fruits and Fruit Products. American Organization of Analytical Chemist International.

Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D. & Gachhui, R. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72.

Chen, C. & Liu, B.Y. 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89(5): 834-839.

Chu, S.C. & Chen, C. 2006. Effects of origins and fermentation time on the antioxidant activities of Kombucha. Food Chemistry 98(3): 502-507. 

Citkowska, A., Szekalska, M. & Winnicka, K. 2019. possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Marine Drugs 17(8): 458.

Dutta, H. & Paul, S.K. 2019. Kombucha drink: production, quality, and safety aspects. Production and Management of Beverages, Vol. 1. The Science of Beverages, disunting oleh Grumezescu, A.M. & Holban, A.M. Woodhead Publishing. hlm. 259-288.

Ettayebi, K., Errachidi, F., Jamai, L., Tahri-Jouti, M.A., Sendide, K. & Ettayebi, M. 2003. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. Federation of European Microbiological Societies Microbiology Letters 223(2): 215-219.

Gahruie, H.H., Hosseini, S.M.H., Taghavifard, M.H., Eskandari, M.H., Golmakani, M.T. & Shad, E. 2017. Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with Shirazi thyme, cinnamon, and rosemary extracts. Journal of Food Quality 2017: 6350156.

Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D.S., Jakobsen, R.R., Castro-Mejía, J.L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G. & Di Gioia, D. 2018. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 11(1): 1.

Habibi, M., Golmakani, M.T., Mesbahi, G., Majzoobi, M. & Farahnaky, A. 2015. Ultrasound- accelerated debittering of olive fruits. Innovative Food Science & Emerging Technologies 31: 105-115. 

Hanjabam, M.D., Kumar, A., Tejpal, C.S., Krishnamoorthy, E., Kishore, P. & Kumar, K.A. 2019. Isolation of crude fucoidan from Sargassum wightii using conventional and ultrasonication extraction methods. Bioactive Carbohydrates and Dietary Fibre 20: 100-200.

Haslam, E. 2003. Thoughts on thearubigins. Phytochemistry 64(1): 61-73.

Ho, C.W., Lazim, A., Fazry, S., Hussain Zaki, U.K.H., Massa, S. & Lim, S.J. 2020. Alcoholic fermentation of soursop (Annona muricata) juice via an alternative fermentation technique. Journal of the Science of Food and Agriculture 100(3): 1012-1021. 

Hur, S.J., Lee, S.Y., Kim, Y.C., Choi, I. & Kim, G.B. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry 160: 346-356.

Jayabalan, R., Malbasa, R.V., Loncar, E.S., Vitas, J.S. & Sathishkumar, M. 2014. A review on kombucha tea microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13(4): 538-550. 

Kallel, L., Desseaux, V., Hamdi, M., Stocker, P. & Ajandouz, E.H. 2012. Insights into the fermentation biochemistry of Kombucha teas and potential impacts of Kombucha drinking on starch digestion. Food Research International 49(1): 226-232. 

Kim, J. & Adhikari, K. 2020. Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages 6(1): 15.

Laureys, D., Britton, S.J. & De Clippeleer, J. 2020. Kombucha tea fermentation: A review. Journal of the American Society of Brewing Chemists 78(3): 165-174.

Lončar, E., Djurić, M., Malbaša, R., Kolarov, L.J. & Klašnja, M. 2006. Influence of working conditions upon kombucha conducted fermentation of black tea. Food and Bioproducts Processing 84(3): 186-192.

Muhialdin, B.J., Osman, F.A., Muhamad, R., Che Wan Sapawi, C.W.N.S., Anzian, A., Voon, W.W.Y. & Hussin, A.S. 2019. Effects of sugar sources and fermentation time on the properties of tea fungus (kombucha) beverage. International Food Research Journal 26(2): 481-487. 

Neffe-Skocinska, K., Sionek, B., Ścibisz, I. & Kołożyn-Krajewska, D. 2017. Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA-Journal of Food 15(4): 601-607.

Nurhayati, N., Yuwanti, S. & Urbahillah, A. 2020. Karakteristik fisikokimia dan sensori Kombucha cascara (kulit kopi ranum). Jurnal Teknologi dan Industri Pangan 31(1): 38-49.

Nguyen, N.K., Nguyen, P.B., Nguyen, H.T. & Le, P.H. 2015. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT-Food Science and Technology 64(2): 1149-1155.

Nummer, B.A. 2013. Kombucha brewing under the food and drug administration model Food Code: Risk analysis and processing guidance (Special Report). Journal of Environment Health 76: 8-11.

Nurikasari, M., Puspitasari, Y. & Siwi, R.P.Y. 2017. Characterization and analysis kombucha tea antioxidant activity based on long fermentation as a beverage functional. Journal of Global Research in Public Health 2(2): 90-96. 

Shahbazi, H., Hashemi, G.H., Golmakani, M.T., Eskandari, M.H. & Movahedi, M. 2018. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science & Nutrition 6(8): 2568-2577. 

Spasenija, M., Katarina, K., Vladimir, V., Dajana, H., Mirela, I., Marjan, R. & Maja, M. 2012. Physicochemical and textural properties of kombucha fermented dairy products. African Journal of Biotechnology 11(9): 2320-2327.

Srihari, T. & Satyanarayana, U. 2012. Changes in free radical scavenging activity of kombucha during fermentation. Journal of Pharmaceutical Sciences and Research 4(11): 1978.

Talebi, M., Frink, L.A., Patil, R.A. & Armstrong, D.W. 2017. Examination of the varied and changing ethanol content of commercial kombucha products. Food Analytical Methods 10(12): 4062-4067.

Tamer, C.E., Temel, Ş.G., Suna, S., Karabacak, A.Ö., Özcan, T., Ersan, L.Y. & Çopur, Ö.U. 2021. Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts. Turkish Journal of Agriculture and Forestry 45(1): 13-32.

Velićanski, A.S., Cvetković, D.D. & Markov, S.L. 2013. Characteristics of kombucha fermentation on medicinal herbs from Lamiaceae family. Romanian Biotechnological Letters 18(1): 8034-8042.

Villarreal‐Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P. & Taillandier, P. 2018. Understanding kombucha tea fermentation: A review. Journal of Food Science 83(3): 580-588. 

Wang, X. 2018. Development and characteristics of green tea kombucha: A thesis presented in partial fulfilment of the requirements for The Degree of Master of Food Technology at Massey University, Albany, New Zealand. Doctoral dissertation, Massey University (Unpublished).

Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H. & Song, S. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs 17(3): 183. 

Watawana, M.I., Jayawardena, N., Ranasinghe, S.J. & Waisundara, V.Y. 2017. Evaluation of the effect of different sweetening agents on the polyphenol contents and antioxidant and starch hydrolase inhibitory properties of kombucha. Journal of Food Processing and Preservation 41(1): e12752. 

Zhao, Y., Zheng, Y., Wang, J., Ma, S., Yu, Y., White, W.L. & Lu, J. 2018. Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Marine Drugs 16(9): 321.

 

*Corresponding author; email: syuhada_ns@ukm.edu.my 

 

 

 

previous