Sains Malaysiana 51(10)(2022):
3401-3414
http://doi.org/10.17576/jsm-2022-5110-23
Isolation of Lactic Acid Bacteria from
Cocoa Bean Fermentation as Potential Antibacterial Agent against ESKAPE
Pathogens
(Pemencilan Asid Laktik Bakteria daripada Penapaian Biji
Koko sebagai Agen Antibakteria yang Berpotensi terhadap Patogen ESKAPE)
NORAZIAH MOHAMAD
ZIN1,*, AUNI NADZIRAH ABD RASHID1, NUR ASYIKIN
ZULKHAIRI1, NUR AQILAH RIDZMAN1, KHAIRUL
BARIAH SULAIMAN2, NUR
FAIZAH ABU BAKAR1 & ASIF SUKRI1
1Programme of Biomedical Science, Centre of Diagnostic, Therapeutic
& Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Cocoa Research & Development Centre Hilir Perak, Malaysian Cocoa Board, P. O. Box 30, Sg. Dulang Road, 36307 Sg Sumun, Perak Darul Ridzuan, Malaysia
Received: 26 April 2022/Accepted: 2
August 2022
Abstract
This study
aimed to evaluate the antibacterial activity of microorganisms isolated before
and during cocoa fermentation against ESKAPE pathogens. Microorganisms from cocoa fermentation process were
isolated on the selective media and were tested against ESKAPE pathogens. Total
titratable acidity, minimal inhibitory concentration (MIC) and minimal
bactericidal concentration (MBC) of cell-free supernatant from lactic acid bacteria (LAB) were
determined. The presence of bacteriocin and antibacterial activity were
determined. LAB was identified through molecular and biochemical tests.
Ninety-five and 134 isolates were obtained from the fermentation of Sungai Balung 25 (BR25) clone and mixed clones, respectively. Screening of antibacterial activity showed
that 26 isolates of LAB from the cocoa fermentation process had antibacterial
activity against ESKAPE pathogens (zone of inhibition ≥11 mm). Cell-free
supernatant from some LAB demonstrated potent antibacterial activity against
some ESKAPE pathogens through MIC and MBC and evaluation. Furthermore, one
isolate (mix48M01) exhibited antibacterial activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp., methicillin-resistant Staphylococcus aureus, and Enterococcus raffinousus.
An increase in the diameter of inhibition zone was observed as the lactic acid
production increased. Gram-positive bacteria isolates were more resistant to
LAB than Gram-negative bacteria. Bacteriocin with good antibacterial activity
was also detected from the LAB examined. Molecular analysis showed that 13 LAB
shared >99% sequence similarity to Lactobacillus fermentum CECT 562 while one isolate
shared sequence similarity <98%, indicating that it might be a novel Lactobacillus species. Isolated LAB
from this study exhibited high antibacterial activity against ESKAPE pathogens
and could be investigated further as potential
probiotics and antibacterial agents in the future.
Keywords:
Antibacterial; cocoa fermentation; ESKAPE pathogens; lactic acid bacteria; Lactobacillus
Abstrak
Kajian ini bertujuan menilai aktiviti antibakteria mikroorganisma dipencilkan daripada sebelum dan selepas penapaian koko. Mikoorganisma daripada penapaian koko dipencilkan di atas media selektif dan diuji ke atas patogen ESKAPE. Keasidan boleh titrat, kepekatan perencat minimum (MIC) dan kepekatan bakterisid minimum (MBC) daripada supernatan tanpa sel bakteria laktik asid (LAB) ditentukan. Kehadiran bakteriosin dan aktiviti antibakteria ditentukan. LAB dikenal pasti menggunakan kaedah biokimia dan molekul. Sembilan puluh lima dan
134 pencilan masing-masing dipencilkan daripada klon Sungai Balung (BR25) dan klon campuran. Saringan aktiviti antibakteria menunjukkan 26 pencilan mempunyai aktiviti terhadap patogen ESKAPE (zon perencatan ≥11 mm). Supernatan tanpa sel menunjukkan aktiviti antibakteria melalui penilaian MIC dan MBC. Satu pencilan (mix48M01) menunjukkan aktiviti terhadapKlebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp., rintangan metisilin Staphylococcus aureus dan Enterococcus raffinousus. Peningkatan diameter zon perencatan dapat diperhatikan apabila kepekatan asid laktik bertambah. Bakteria Gram positif adalah lebih rintang terhadap LAB berbanding dengan Gram negatif. Bakteriosin dengan aktiviti antibakteria yang baik turut dikesan. Analisis molekul menunjukkan 13 pencilan mempunyai penjujukan DNA sama >99% dengan Lactobacillus fermentum CECT 562, manakala satu pencilan mempunyai penjujukan <98%, mencadangkan spesis Lactobacillus yang baharu. Pencilan LAB yang dipencilkan dalam kajian ini menunjukkan aktiviti antibakteria yang baik terhadap patogen ESKAPE dan boleh dikaji dengan lebih mendalam lagi pada masa hadapan.
Kata kunci: Antibakteria; asid laktik bakteria; Lactobacillus; patogen ESKAPE; penapaian koko
REFERENCES
Ahmad, A., Yap, W.B., Kofli, N.T. & Ghazali, A.R. 2018.
Probiotic potentials of Lactobacillus
plantarum isolated from fermented durian (Tempoyak), a Malaysian
traditional condiment. Food Sci. Nutr. 6(6): 1370-1377.
Azhar, I. & Lee, M.T. 2004. Perspective for cocoa
cultivation in Malaysia: Re-look at the economic indicators. Malaysian Cocoa
Journal 1: 1-18.
Basri, D.F., Tan, L.S., Shafiei, Z. & Zin, N.M. 2012. In vitro antibacterial activity of galls
of Quercus infectoria Olivier against oral pathogens. Evid. Based
Complement Alternat. Med. 2012: 632796.
Bullerman, L.B. 2004. SPOILAGE | Fungi in food - An overview.
In Encyclopedia of Food Sciences and
Nutrition, 2nd ed., edited by Caballero, B. Massachusetts: Academic Press.
pp. 5511-5522. https://doi.org/10.1016/B0-12-227055-X/01129-9
Camu, N., De Winter,
T., Verbrugghe, K., Cleenwerck,
I., Vandamme, P., Takrama,
J.S., Vancanneyt, M. & De Vuyst,
L. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and
acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans
in Ghana. Appl. Environ. Microbiol. 73(6): 1809-1824.
Chen,
C.C., Lai, C.C., Huang, H.L., Huang, W.Y., Toh, H.S.,
Weng, T.C., Chuang, Y.C., Lu, Y.C. & Tang, H.J. 2019. Antimicrobial
activity of Lactobacillus species
against carbapenem-resistant Enterobacteriaceae. Front Microbiol. 10: 789.
Chin, H.H. 2006.
Cocoa pulp juice. Malaysia Cocoa 3(1): 8-9.
CLSI. 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards
Institute
George, F., Daniel, C., Thomas, M.,
Singer, E., Guilbaud, A., Tessier, F.J., Revol-Junelles, A-M., Borges, F. & Foligné,
B. 2018. Occurrence and dynamism of lactic acid bacteria in distinct ecological
niches: A multifaceted functional health perspective. Front Microbiol. 9: 2899.
Gomes, R.J.,
Borges, M.F., Rosa, M.F., Castro-Gómez, R. & Spinosa, W.A. 2018. Acetic
acid bacteria in the food industry: Systematics, characteristics and
applications. Food Technol. Biotechnol. 56(2):
139-151.
Liévin-Le Moal, V. & Servin, A.L. 2014. Anti-infective activities
of lactobacillus strains in the human intestinal microbiota: From probiotics to
gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev.
27(2): 167-199.
Mathur, H., Field, D., Rea, M.C., Cotter,
P.D., Hill, C. & Ross, R.P. 2017. Bacteriocin-antimicrobial synergy: A
medical and food perspective. Front Microbiol. 8: 1205.
Meersman, E., Steensels,
J., Mathawan, M., Wittocx,
P.J., Saels, V., Struyf,
N., Bernaert, H., Vrancken,
G. & Verstrepen, K.J. 2013. Detailed analysis of
the microbial population in Malaysian spontaneous cocoa pulp fermentations
reveals a core and variable microbiota. PLoS ONE 8(12): e81559.
Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J.Á., Martínez, R.G., Miralles,
B., Bergillos, T., Navarro-Alarcón,
M. & Jauregi, P. 2017. Antioxidant,
ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and
physicochemical property relationship of the peptide components. Food Funct. 8(8): 2783-2791.
Mulani, M.S., Kamble,
E.E., Kumkar, S.N., Tawre,
M.S. & Pardesi, K.R. 2019. Emerging strategies to
combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front
Microbiol. 10: 539.
Mutani, J.M. & Arias, C.A. 2016. Mechanisms
of antibiotic resistance. Microbiol. Spectr.
4(2): VMBF-0016-2015.
Okuda, K-I., Zendo, T., Sugimoto, S.,
Iwase, T., Tajima, A., Yamada, S., Sonomoto, K. & Mizunoe, Y. 2013. Effects of bacteriocins on
methicillin-resistant Staphylococcus
aureus biofilm. Antimicrob. Agents
Chemother. 57(11): 5572-5579.
Papalexandratou, Z., Lefeber,
T., Bakhtiar, B., Ong, S.L., Daniel, H.M. & De Vuyst, L. 2013. Hanseniaspora opuntiae, Saccharomyces
cerevisiae, Lactobacillus fermentum,
and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations,
underlining the importance of these microbial species for a successful cocoa
bean fermentation process. Food Microbiol. 35(2): 73-85.
Pereira, G.V., Miguel, M.G., Ramos, C.L.
& Schwan, R.F. 2012. Microbiological and physicochemical characterization
of small-scale cocoa fermentations and screening of yeast and bacterial strains
to develop a defined starter culture. Appl. Environ. Microbiol. 78(15):
5395-5405.
Pettit, R.K. 2009. Mixed fermentation for
natural product drug discovery. Appl. Microbiol. Biotechnol. 83(1): 19-25.
Rasamiravaka, T., Labtani,
Q., Duez, P. & El Jaziri, M. 2015. The formation
of biofilms by Pseudomonas aeruginosa:
A review of the natural and synthetic compounds interfering with control
mechanisms. Biomed. Res. Int.
2015: 759348.
Romanens, E., Freimüller Leischtfeld, S., Volland,
A., Stevens, M.J.A., Krähenmann, U., Isele, D., Fischer, B., Meile, L.
& Miescher Schwenninger, S. 2019. Screening of
lactic acid bacteria and yeast strains to select adapted anti-fungal
co-cultures for cocoa bean fermentation. Int. J. Food Microbiol. 290:
262-272.
Sharma, V., Harjai,
K. & Shukla, G. 2018. Effect of bacteriocin and exopolysaccharides isolated
from probiotic on P. aeruginosa PAO1
biofilm. Folia Microbiol. (Praha). 63(2): 181-190.
Santos, R.X.,
Oliveira, D.A., Sodré, G.A., Gosmann,
G., Brendel, M. & Pungartnik, C. 2014.
Antimicrobial activity of fermented Theobroma
cacao pod husk extract. Genet. Mol. Res. 13(3): 7725-7735.
Sukri, A., Saat, M.N.F., Mohd Yusof, N.A.,
Zin, N.M. & Abdul Rachman, A.R. 2021. Differences
in antibiotic resistance profiles of methicillin-susceptible and–resistant Staphylococcus aureus isolated from the
teaching hospital in Kuala Lumpur, Malaysia. J. Appl. Biol. Biotechnol. 9(4): 98-103.
Tacconelli, E., Carrara, E., Savoldi,
A., Harbarth, S., Mendelson, M., Monnet, D.L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y.,
Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E.M., Houchens, C.R., Grayson, M.L.,
Hansen, P., Singh, N., Theuretzbacher, U., Magrini, N. & WHO Pathogens Priority List Working
Group. 2018. Discovery, research, and development of new antibiotics: the WHO
priority list of antibiotic-resistant bacteria and tuberculosis. Lancet
Infect Dis. 18(3): 318-327.
Tamang, J.P., Watanabe, K. &
Holzapfel, W.H. 2016. Review: Diversity of microorganisms in global fermented
foods and beverages. Front Microbiol. 7: 377.
Thompson, S.S., Miller, K.B. & Lopez, A.S. 2007. Cocoa and coffee. In Food
Microbiology: Fundamental and Frontiers, edited by Doyle, M. & Beuchat,
L. ASM Press. pp. 837-850.
Vuyst, L.D. & Leroy, F. 2020. Functional role of yeasts,
lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS
Microbiol Rev. 44(4): 432-453.
Yoon, J.H., Kang, S.S., Mheen, T.I., Ahn, J.S., Lee,
H.J., Kim, T.K., Park, C.S., Kho, Y.H., Kang, K.H. & Park, Y.H. 2000. Lactobacillus kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50(5): 1789-1795.
Zaharuddin, L., Mokhtar, N.M., Muhammad Nawawi, K.N. & Raja Ali, R.A. 2019. A randomized double-blind
placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC
Gastroenterol. 19(1): 131.
Zhen, X., Lundborg,
C.S., Sun, X., Hu, X. & Dong, H. 2019. Economic burden of antibiotic
resistance in ESKAPE organisms: A systematic review. Antimicrob.
Resist. Infect. Control. 8: 137.
*Corresponding author; email: noraziah.zin@ukm.edu.my
|