Sains Malaysiana 51(10)(2022):
3423-3436
http://doi.org/10.17576/jsm-2022-5110-25
A Geant4 Simulation on the Application of Multi-layer Graphene as a Detector Material in High-energy Physics
(Simulasi Geant4 ke atas Pengaplikasian Grafin Berbilang
Lapisan sebagai Bahan Pengesan dalam Fizik Bertenaga Tinggi)
NURUL
HIDAYAH MOHAMAD NOR1,2,*, NUR AFIRA ANUAR2,
WAN AHMAD TAJUDDIN WAN ABDULLAH1, BOON TONG GOH2 & MOHD FAKHARUL ZAMAN RAJA YAHYA3
1National
Centre for Particle Physics, Universiti Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
2Low
Dimensional Material Research Centre, Department of Physics, Faculty of
Science, Universiti Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
3Faculty of Applied Science, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
Received:
3 January 2022/Accepted: 25 May 2022
Abstract
The
excellent properties of graphene, such as its high thermal conductivity, high
electrical conductivity, and high electron density, make it an ideal candidate
as a detector material in high-energy physics applications. In this work, we demonstrate the feasibility of multi-layer graphene
(MLG) as a detector material in a high-energy environment. The Geant4 software
package was used to estimate the energy of the deposited electrons within
various thicknesses of MLG, ranging from 3 to 20 nm. The efficiency of the MLG
as a detector material was further analyzed from the scattering angle and the
yield of the secondary particles produced from the electron interaction with
the material. The incident electron’s kinetic energy used herein ranged between
30 keV and 1 GeV, at a particle fluence of 1×107 e/cm2. The results show that the deposited
energy was relatively low for the interaction with 1 MeV electrons, and
dramatically increased as the thickness increases beyond 15 nm. This result was
further supported by the highest yield of gamma radiation recorded by the
interaction with a kinetic energy larger than 1 MeV, for thickness larger than
15 nm. The results suggest that the MLG works best as a charged particle
detector in low energy ranges, while for high energy ranges, a thickness over
15 nm is suggested. The findings demonstrate that a MLG with a thickness larger
than 15 nm could potentially be used as a detector material in high-energy
conditions.
Keywords: Detector
material; Geant4; Monte Carlo simulation method
Abstrak
Ciri cemerlang grafin seperti kekonduksian terma, kekonduksian elektrik dan ketumpatan elektron yang tinggi telah menjadikannya calon yang ideal sebagai bahan pengesan dalam aplikasi fizik bertenaga tinggi. Kajian ini menunjukkan kebolehlaksanaan grafin berbilang lapisan (MLG) sebagai bahan pengesan dalam persekitaran bertenaga tinggi. Perisian Geant4 digunakan untuk mengukur tenaga elektron terdeposit dalam pelbagai ketebalan MLG, antara 3 hingga 20 nm. Kecekapan MLG sebagai bahan pengesan dianalisis selanjutnya dari sudut serakan dan hasil zarah sekunder yang dihasilkan daripada interaksi elektron dengan bahan. Tenaga kinetik elektron yang digunakan di sini adalah antara 30 keV hingga 1 GeV, pada kelancaran zarah 1×107 e/cm2. Hasil kajian menunjukkan bahawa tenaga yang didepositkan adalah agak rendah untuk interaksi dengan elektron 1 MeV dan bertambah baik secara mendadak dengan ketebalan melebihi 15 nm. Keputusan ini disokong lagi oleh hasil sinaran gamma tertinggi yang diperoleh untuk interaksi dengan tenaga kinetik lebih besar daripada 1 MeV bagi ketebalan melebihi 15 nm. Hasil kajian ini menunjukkan bahawa MLG berfungsi paling baik sebagai pengesan zarah bercas dalam julat tenaga rendah, manakala untuk julat tenaga tinggi, ketebalan melebihi 15 nm dicadangkan.
Kata kunci: Bahan pengesan; Geant4; kaedah simulasi Monte Carlo
REFERENCES
Ang,
P.K., Chen, W., Wee, A.T.S. & Kian, P.L. 2008. Solution-gated epitaxial
graphene as pH sensor. Journal of the American Chemical Society 130(44):
14392-14393. doi:10.1021/ja805090z.
Bachmair,
F. 2016. CVD diamond sensors in detectors for high energy physics. PhD Thesis. ETH Zürich (Unpublished).
https://doi.org/10.3929/ethz-a-010748643.
Balandin,
A.A. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature
Materials 10(8): 569-581. doi:10.1038/nmat3064.
Banhart,
F. 1999. Irradiation effects in carbon nanostructures. Reports on Progress
in Physics 62(8): 1181-1221. doi:10.1088/0034-4885/62/8/201.
Banhart,
F., Li, J.X. & Krasheninnikov, A.V. 2005. Carbon nanotubes under electron
irradiation: Stability of the tubes and their action as pipes for atom
transport. Physical Review B - Condensed Matter and Materials Physics 71(24): 1-4. doi:10.1103/PhysRevB.71.241408.
Berger,
M.J., Inokuti, M., Anderson, H.H., Bichsel, H., Dennis, J.A., Powers, D.,
Seltzer, S.M. & Turner, J.E. 1984. Stopping powers for electrons and
positrons. Journal of the International Commission on Radiation Units and
Measurements 19(2): 281. doi:https://doi.org/10.1093/jicru/os19.2.Report37.
Biswas,
S. & Drzal, L.T. 2010. Multilayered nano-architecture of variable sized
graphene nanosheets for enhanced supercapacitor electrode performance. ACS
Applied Materials and Interfaces 2(8): 2293-2300. doi:10.1021/am100343a.
Bortoletto,
D. 2015. How and why silicon sensors are becoming more and more intelligent? Journal
of Instrumentation 10(8). doi:10.1088/1748-0221/10/08/C08016.
Buckley, A., Krauss, F., Plätzer, S., Seymour, M., Alioli,
S., Andersen, J., Bellm, J., Butterworth,
J., Dasgupta,
M., Duhr,
C., Frixione,
S., Gieseke,
S., Hamilton,
K., Hesketh,
G., Hoeche,
S., Jung,
H., Kilian,
W., Lönnblad,
L., Maltoni,
F., Mangano,
M., Mrenna,
S., Nagy, Z., Nason,
P., Nurse,
E., Ohl,
T., Oleari,
C., Papaefstathiou, A., Plehn,
T., Prestel,
S., Ré,
E., Reuter,
J., Richardson,
P., Salam,
G., Schoenherr,
M., Schumann,
S., Siegert,
F., Siódmok,
A., Sjödahl,
M., Sjöstrand,
T., Skands,
P., Soper,
D., Soyez,
G. & Webber,
B. 2019. Monte Carlo event generators for high
energy particle physics event simulation. arXiv. https://arxiv.org/abs/1902.01674
Carrier,
J.F., Archambault, L., Beaulieu, L. & Roy, R. 2004. Validation of GEANT4,
an object-oriented Monte Carlo toolkit, for simulations in medical physics. Medical
Physics 31(3): 484-492. doi:10.1118/1.1644532.
Castro
Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K. 2009.
The electronic properties of graphene. Reviews of Modern Physics 81(1):
109-162. doi:10.1103/RevModPhys.81.109.
Compagnini,
G., Giannazzo, F., Sonde, S., Raineri, V. & Rimini, E. 2009. Ion
irradiation and defect formation in single layer graphene. Carbon 47(14): 3201-3207. doi:10.1016/j.carbon.2009.07.033.
Demir,
N. & Kuluöztürk, Z.N. 2021. Determination of energy resolution for a
NaI(Tl) detector modeled with FLUKA code. Nuclear Engineering and Technology 53(11): 3759-3763. doi:10.1016/J.NET.2021.05.017.
Giani,
S., Leroy, C., Price, L., Rancoita, P-G. & Ruchti, R. 2014. Astroparticle, particle, space physics and
detectors for physics applications. Astroparticle, Particle, Space
Physics, Radiation Interaction, Detectors and Medical Physics Applications. Vol. 8. doi:doi:10.1142/9166.
Girit,
Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park,
C.H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. 2009. Graphene at
the edge: Stability and dynamics. Science 323(5922): 1705-1708.
doi:10.1126/science.1166999.
Golunski,
M. & Postawa, Z. 2018. Effect of kinetic energy and impact angle on carbon
ejection from a free-standing graphene bombarded by kilo-electron-volt C 60. Journal
of Vacuum Science & Technology B, Nanotechnology and Microelectronics:
Materials, Processing, Measurement, and Phenomena 36(3): 03F112.
doi:10.1116/1.5019732.
Grupen,
C., Shwartz, B.A. & Spieler, H. 2008. Particle Detectors. Cambridge:
Cambridge University Press.
Guatelli,
S., Cutajar, D., Oborn, B. & Rosenfeld, A.B. 2011. Introduction to the
geant4 simulation toolkit. AIP Conference Proceedings 1345: 303-322.
doi:10.1063/1.3576174.
Hartmann,
F. & Kaminski, J. 2011. Advances in tracking detectors. Annual Review of
Nuclear and Particle Science 61: 197-221.
doi:10.1146/annurev-nucl-102010-130052.
Holbert,
K.E. 2012. Charged particle ionization and range. EEE460-Handout.
Hossain,
I., Sharip, N. & Viswanathan, K.K. 2012. Efficiency and resolution of HPGe
and NaI(Tl) detectors using gamma-ray spectroscopy. Scientific Research and
Essays 7(1): 86-89. doi:10.5897/sre11.1717.
Jeong,
H.Y., Lee, D-S., Choi, H.K., Lee, D.H., Kim, J-E., Jeong, H.Y., Lee, D-S.,
Choi, H.K., Lee, D.H. & Kim, J-E. 2010. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films flexible
room-temperature NO2 gas sensors based on carbon nanotubes/reduced
graphene hybrid films. Applied Physics Letters 96: 213105. doi:10.1063/1.3432446.
Khan,
F.M. & Gibbons, J.P. 2010. The Physics of Radiation Therapy. 5th ed.
Philadelphia: Wolters Kluwer.
Kholili,
J. 2015. Using graphene as ion detector. Master Thesis. Chalmers University of
Technology, Gothenburg Sweden (Unpublished).
Kim,
K.J., Choi, J., Lee, H., Lee, H.K., Kang, T.H., Han, Y.H., Lee, B.C., Kim, S.
& Kim, B. 2008. Effects of 1 MeV electron beam irradiation on multilayer
graphene grown on 6H-SiC(001). Journal of Physical Chemistry C 112(34):
13062-13064. doi:10.1021/jp805141e.
Krasheninnikov,
A.V. & Banhart, F. 2007. Engineering of nanostructured carbon materials
with electron or ion beams. Nature Mate 6: 723-733.
doi:10.1038/nmat1996.
Kumar,
S., Reshi, B.A. & Varma, R. 2018a. Comparison of silicon, germanium,
gallium nitride, and diamond for using as a detector material in experimental
high energy physics. Results in Physics 11(August): 461-474.
doi:10.1016/j.rinp.2018.08.045.
Kumar,
S., Varma, R., Das Gupta, K., Sarin, P. & Deb, S.K. 2018b. Comparison of
Si, Ge, and diamond sensors for using it in hep experiments. Springer
Proceedings in Physics 201: 97-105. doi:10.1007/978-981-10-7665-7_9.
Le
Bleis, T. & Klenze, P. 2014. Physics simulation with Geant4. Technical
University Munich. https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-77.en.pdf
Lechner,
A. 2018. Particle interactions with matter. CERN Yellow Reports: School
Proceedings 5(March): 47-68. doi:10.23730/CYRSP-2018-005.47.
Lee,
C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement of the elastic
properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. doi:10.1126/science.1156211.
Lin,
Y-M., Jenkins, K.A., Valdes-garcia, A., Small, J.P., Farmer, D.B. &
Avouris, P. 2009. Operation of graphene transistors at gigahertz frequencies. Nano
Letters 9(1): 422-426. doi:10.1021/nl803316h.
Liu,
H., Liu, Y. & Zhu, D. 2011. Chemical doping of graphene. Journal of
Materials Chemistry 21(10): 3335-3345. doi:10.1039/c0jm02922j.
Lu,
G., Ocola, L.E. & Chen, J. 2009. Reduced graphene oxide for
room-temperature gas sensors. Nanotechnology 20(44): 445502.
doi:10.1088/0957-4484/20/44/445502.
Mayorov,
A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko,
L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T. & Geim, A.K.
2011. Micrometer-scale ballistic transport in encapsulated graphene at room
temperature. Nano Letters 11(6): 2396-2399. doi:10.1021/nl200758b.
Meroli,
S. 2015. Interaction of Radiation with
Matter: From the Theory to the Measurements. https://www.researchgate.net/publication/283855144_Interaction_of_radiation_with_matter_from_the_theory_to_the_measurements
Metcalfe,
J., Mejia, I., Murphy, J., Quevedo, M., Smith, L., Alvarado, J., Gnade, B.
& Takai, H. 2014. Potential of thin films for use in charged particle
tracking detectors. http://arxiv.org/abs/1411.1794.
Meyer,
J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F. & Zettl, A.
2008. Direct imaging of lattice atoms and topological defects in graphene
membranes. Nano Letters 8(11): 3582-3586. doi:10.1021/nl801386m.
Moll,
M. 2006. Radiation tolerant semiconductor sensors for tracking detectors. Nuclear
Instruments and Methods in Physics Research, Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 565(1): 202-211.
doi:10.1016/j.nima.2006.05.001.
Moser,
J., Barreiro, A. & Bachtold, A. 2007. Current-induced cleaning of graphene. Applied Physics Letters 91(16): 1-4. doi:10.1063/1.2789673.
Murata,
H., Nakajima, Y., Saitoh, N., Yoshizawa, N., Suemasu, T. & Toko, K. 2019.
High-electrical-conductivity multilayer graphene formed by layer exchange with
controlled thickness and interlayer. Scientific Reports 9(1): 1-5.
doi:10.1038/s41598-019-40547-0.
Nur
Afira binti Anuar, Nurul Hidayah Mohamad Nor, Rozidawati binti Awang, Hideki
Nakajima, Sarayut Tunmee, Manoj Tripathi, Alan Dalton & Boon Tong Goh.
2021. Low-temperature growth of graphene nanoplatelets by hot-wire chemical
vapour deposition. Surface and Coatings Technology 411: 126995.
doi:10.1016/j.surfcoat.2021.126995.
Razaghi,
S., Saramad, S. & Shamsaei, M. 2019. Simulation study of resistive plate
chamber’s (RPCs) capability for medical imaging applications. Journal of Instrumentation 14: P01024.
Robinson,
J.T., Keith Perkins, F., Snow, E.S., Wei, Z. & Sheehan, P.E. 2008. Reduced
graphene oxide molecular sensors. Nano Letters 8(10): 3137-3140.
doi:10.1021/nl8013007.
Schedin,
F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov,
K.S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature
Materials 6(9): 652-655. doi:10.1038/nmat1967.
Schmidt,
B. 2016. The high-luminosity upgrade of the LHC: Physics the high-luminosity
upgrade of the LHC physics and technology challenges for the accelerator and
the experiments. Journal of Physics: Conference Series 706: 22002.
doi:10.1088/1742-6596/706/2/022002.
Singh,
V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. & Seal, S. 2011. Graphene
based materials: Past, present and future. Progress in Materials Science 56(8): 1178-1271. doi:10.1016/j.pmatsci.2011.03.003.
Spieler,
H. 2005. Semiconductor Detector Systems.
Oxford: Clarendon Press.
Tanabashi,
M., Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., Tanaka,
J., et al. 2018. Review of particle physics. Physical Review D 98(3):
30001. doi:10.1103/PhysRevD.98.030001.
Tielrooij,
K.J., Song, J.C.W., Jensen, S.A., Centeno, A., Pesquera, A., Zurutuza Elorza,
A., Bonn, M., Levitov, L.S. & Koppens, F.H.L. 2013. Photoexcitation cascade
and multiple hot-carrier generation in graphene. Nature Physics 9(4):
248-252. doi:10.1038/nphys2564.
Wang,
J., Chen, D., Chen, T. & Shao, L. 2020. Displacement of carbon atoms in
few-layer graphene. Journal of Applied Physics 128: 085902.
doi:10.1063/5.0013310.
Zhang,
T., Cheng, Z., Wang, Y., Li, Z., Wang, C., Li, Y. & Fang, Y. 2010.
Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano
Letters 10(11): 4738-4741. doi:10.1021/nl1032556.
Zheng,
X., Chen, W., Wang, G., Yu, Y., Qin, S., Fang, J., Wang, F. & Zhang, X.A.
2015. The Raman redshift of graphene impacted by gold nanoparticles. AIP
Advances 5(5): 1-8. doi:10.1063/1.4921316.
*Corresponding author; email:
nurulhidayah@um.edu.my
|