Sains Malaysiana 51(10)(2022): 3463-3479

http://doi.org/10.17576/jsm-2022-5110-28

 

Konsep Penghibridan 4-Aminokuinolina sebagai Alternatif Agen Antiplasmodium

 

(4-Aminoquinoline Hybridization Concept as Alternative Antiplasmodial Agent)

 

NURFARAHANIM MUHAMMAD ZUBIR1, MOHD RIDZUAN MOHD ABD RAZAK2, AMATUL HAMIZAH ALI1, MUKRAM MOHAMED MACKEEN1,3 & NURUL IZZATY HASSAN1,*

 

1Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health (NIH) Complex, Ministry of Health Malaysia, 40170 Shah Alam, Selangor

3Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 February 2022/Accepted: 29 June 2022

 

Abstrak

Kemunculan strain parasit yang rintang terhadap hampir semua ubatan antimalaria telah mendorong para saintis mengkaji penggantian mekanisme tindakan alternatif yang lebih berkesan. Keberkesanan rawatan semasa antimalaria adalah terhad dari segi bio ketersediaan ubat yang rendah, ketoksikan ubat yang tinggi dan kadar keterlarutan dalam air yang rendah. Penghibridan adalah satu strategi menarik bagi mengembangkan konsep penemuan ubat antimalaria. Kerangka 4-aminokuinolina telah disasarkan dalam kebanyakan proses reka bentuk agen antiplasmodium kerana kos sintesisnya yang murah, selamat dan kurang toksik sejak 20 tahun yang lalu. Penemuan hibrid antiplasmodium menggunakan kerangka 4-aminokuinolina dan pelbagai moieti seperti artemisinin, piperidin, indolin, pirimidin telah menunjukkan aktiviti antiplasmodium yang baik. Walau bagaimanapun, sehingga kini penemuan hibrid ini masih tidak dapat dibangunkan dan memasuki ujian percubaan klinikal. Ulasan ini meringkaskan penemuan hibrid antiplasmodium yang telah diterbitkan dalam tempoh sebelas tahun ke belakang (2011-2021). Kelebihan dan kelemahan konsep penghibridan sebagai pengganti agen antiplasmodium sedia ada dibincangkan. Analisis kajian menunjukkan hibrid 4-aminokuinolina mempunyai aktiviti antiplasmodium yang setanding atau lebih baik secara in vitro berbanding rawatan profilaksis klorokuina. Hibrid kuinolina kelas IV adalah yang paling kerap dikaji dan diperoleh dalam kajian ini sepanjang tempoh sebelas tahun ke belakang. Kekurangan data praklinikal terperinci mengenai hibrid yang disintesis telah menghalang kajian lanjut dalam ujian klinikal.

 

Kata kunci: Hibrid; literatur sistematik; malaria; Plasmodium falciparum; 4-aminokuinolina

 

Abstract

The emergence of parasitic strains’ resistant to almost all antimalarial drugs has prompted scientists to study more effective alternative mechanisms of action. Current antimalarial treatment is limited due to poor drug bioavailability, high drug toxicity, and low aqueous solubility. Hybridization is an exciting strategy in antimalarial drug discovery. The 4-aminoquinoline framework has been targeted in the design of various antiplasmodial agents because its synthesis is low cost, safe and has been used over the past 20 years. The discovery of antiplasmodial hybrids using the 4-aminoquinoline framework and various moieties such as artemisinin, piperidine, indoline, and pyrimidine have shown good antiplasmodial activity. However, these hybrids are still not fully developed for clinical trials. This literature review summarises the findings of antiplasmodial hybrids published over the past eleven years (2011-2021). The advantages and disadvantages of hybridization as a substitute for existing antiplasmodial agents are discussed. This review reports  that 4-aminoquinoline hybrids had comparable or better in vitro antiplasmodial activity than the chloroquine prophylaxis treatment. Class IV quinoline hybrids were the most frequently studied and obtained in this study over the past eleven years. The lack of detailed preclinical data on the synthesised hybrids has hampered further studies in clinical trials.

 

Keywords: Hybrid; malaria; Plasmodium falciparum; systematic literature; 4-aminoquinoline

 

REFERENCES

Agarwal, D., Gupta, R.D. & Awasthi, S.K. 2017. Are antimalarial hybrid molecules a close reality or a distant dream? Antimicrobial Agents and Chemotherapy 61(5): e00249-17. https://doi.org/10.1128/AAC.00249-17

Andayi, W.A., Egan, T.J., Gut, J., Rosenthal, P.J. & Chibale, K. 2013. Synthesis, antiplasmodial activity, and β-hematin inhibition of hydroxypyridone-chloroquine hybrids. ACS Medicinal Chemistry Letters 4(7): 642-646. https://doi.org/10.1021/ml4001084

Baartzes, N., Jordaan, A., Warner, D.F., Combrinck, J., Taylor, D., Chibale, K. & Smith, G.S. 2020. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. European Journal of Medicinal Chemistry 206: 112694. https://doi.org/10.1016/j.ejmech.2020.112694

Basilico, N., Parapini, S., Sparatore, A., Romeo, S., Misiano, P., Vivas, L., Yardley, V., Croft, S.L., Habluetzel, A., Lucantoni, L., Renia, L., Russell, B., Suwanarusk, R., Nosten, F., Dondio, G., Bigogno, C., Jabes, D. & Taramelli, D. 2017. In vivo and in vitro activities and ADME-tox profile of a quinolizidine-modified 4-aminoquinoline: A potent anti-P. falciparum and Anti-P. viva blood-stage antimalarial. Molecules 22(12): 1-15. https://doi.org/10.3390/molecules22122102

Bhagat, S., Arfeen, M., Das, G., Ramkumar, M., Khan, S.I., Tekwani, B.L. & Bharatam, P.V. 2019. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorganic Chemistry 91(January): 103094. https://doi.org/10.1016/j.bioorg.2019.103094

Bhat, H.R., Singh, U.P., Yadav, P.S., Kumar, V., Gahtori, P., Das, A., Chetia, D., Prakash, A. & Mahanta, J. 2016. Synthesis, characterization and antimalarial activity of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Arabian Journal of Chemistry 9: S625-S631. https://doi.org/10.1016/j.arabjc.2011.07.001

Bhat, H.R., Singh, U.P., Thakur, A., Kumar Ghosh, S., Gogoi, K., Prakash, A. & Singh, R.K. 2015. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Experimental Parasitology 157: 59-67. https://doi.org/10.1016/j.exppara.2015.06.016

Boechat, N., Carvalho, R.C.C., Ferreira, M.d.L.G., Coutinho, J.P., Sa, P.M., Seito, L.N., Rosas, E.C., Krettli, A.U., Bastos, M.M. & Pinheiro, L.C.S. 2020. Antimalarial and anti-inflammatory activities of new chloroquine and primaquine hybrids: Targeting the blockade of malaria parasite transmission. Bioorganic and Medicinal Chemistry 28(24): 115832. https://doi.org/10.1016/j.bmc.2020.115832

Boudhar, A., Ng, X.W., Loh, C.Y., Chia, W.N., Tan, Z.M., Nosten, F., Dymock, B.W. & Tan, K.S.W. 2016. Overcoming chloroquine resistance in malaria: Design, synthesis and structure-activity relationships of novel chemoreversal agents. European Journal of Medicinal Chemistry 119(5): 231-249. https://doi.org/10.1016/j.ejmech.2016.04.058

Burgess, S.J., Selzer, A., Kelly, J.X., Smilkstein, M.J., Riscoe, M.K. & Peyton, D.H. 2006. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. Journal of Medicinal Chemistry 49(18): 5623-5625. https://doi.org/10.1021/jm060399n

Capela, R., Cabal, G.G., Rosenthal, P.J., Gut, J., Mota, M.M., Moreira, R., Lopes, F. & Prudêncio, M. 2011. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrobial Agents and Chemotherapy 55(10): 4698-4706. https://doi.org/10.1128/AAC.05133-11

Chauhan, K., Sharma, M., Saxena, J., Singh, S.V., Trivedi, P., Srivastava, K., Puri, S.K., Saxena, J.K., Chaturvedi, V. & Chauhan, P.M.S. 2013. Synthesis and biological evaluation of a new class of 4-aminoquinoline- rhodanine hybrid as potent anti-infective agents. European Journal of Medicinal Chemistry 62: 693-704. https://doi.org/10.1016/j.ejmech.2013.01.017

Guantai, E. & Chibale, K. 2010. Chloroquine resistance: Proposed mechanisms and countermeasures. Current Drug Delivery 7(4): 312-323. https://doi.org/http://dx.doi.org/10.2174/156720110793360577

Chopra, R., Chibale, K. & Singh, K. 2018. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial activity. European Journal of Medicinal Chemistry 148: 39-53. https://doi.org/10.1016/j.ejmech.2018.02.021

Chopra, R., de Kock, C., Smith, P., Chibale, K. & Singh, K. 2015. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities. European Journal of Medicinal Chemistry 100: 1-9. https://doi.org/https://doi.org/10.1016/j.ejmech.2015.05.043

da Silva, R.M.R.J., Gandi, M.O., Mendonça, J.S., Carvalho, A.S., Coutinho, J.P., Aguiar, A.C.C., Krettli, A.U. & Boechat, N. 2019. New hybrid trifluoromethylquinolines as antiplasmodial agents. Bioorganic and Medicinal Chemistry 27(6): 1002-1008. https://doi.org/10.1016/j.bmc.2019.01.044

Datoo, M.S., Natama, M.H., Somé, A., Traoré, O., Rouamba, T., Bellamy, D., Yameogo, P., Valia, D., Tegneri, M., Ouedraogo, F., Soma, R., Sawadogo, S., Sorgho, F., Derra, K., Rouamba, E., Orindi, B., Ramos Lopez, F., Flaxman, A., Cappuccini, F., Kailath, R., Elias, S., Mukhopadhyay, E., Noe, A., Cairns, M., Lawrie, A., Roberts, R., Valéa, I., Sorgho, H., Williams, N., Glenn, G., Fries, L., Reimer, J., Ewer, K.J., Shaligram, U., Hill, A.V.S. & Tinto, H. 2021. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: A randomized controlled trial. The Lancet 397(10287): 1809-1818. https://doi.org/10.1016/S0140-6736(21)00943-0

Dondorp, A.M., Yeung, S., White, L., Nguon, C., Day, N.P.J., Socheat, D. & Von Seidlein, L. 2010. Artemisinin resistance: Current status and scenarios for containment. Nature Reviews Microbiology 8(4): 272-280. https://doi.org/10.1038/nrmicro2331

Egan, T.J., Hunter, R., Kaschula, C.H., Marques, H.M., Misplon, A. & Walden, J. 2000. Structure−function relationships in aminoquinolines:  Effect of amino and chloro groups on Quinoline−Hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. Journal of Medicinal Chemistry 43(2): 283-291. https://doi.org/10.1021/jm990437l

Feng, L.S., Xu, Z., Chang, L., Li, C., Yan, X.F., Gao, C., Ding, C., Zhao, F., Shi, F. & Wu, X. 2020. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Medicinal Research Reviews 40(3): 931-971. https://doi.org/10.1002/med.21643

Feng, T.S., Guantai, E.M., Nell, M., Van Rensburg, C.E.J., Ncokazi, K., Egan, T.J., Hoppe, H.C. & Chibale, K. 2011. Effects of highly active novel artemisinin-chloroquinoline hybrid compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochemical Pharmacology 82(3): 236-247. https://doi.org/10.1016/j.bcp.2011.04.018

Fermini, B. & Fossa, A.A. 2003. The impact of drug-induced QT interval prolongation on drug discovery and development. Nature Reviews Drug Discovery 2(6): 439-447. https://doi.org/10.1038/nrd1108

Françoise, B.V., Joël, L., Antoine, B., Caroline, D., Odile, D.C., Jérôme, C., Christophe, L., Anne, R., Jean-François, M. & Bernard, M. 2007. Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrobial Agents and Chemotherapy 51(4): 1463-1472. https://doi.org/10.1128/AAC.00967-06

Fröhlich, T., Çapcı Karagöz, A., Reiter, C. & Tsogoeva, S.B. 2016. Artemisinin-derived dimers: Potent antimalarial and anticancer agents. Journal of Medicinal Chemistry 59(16): 7360-7388. https://doi.org/10.1021/acs.jmedchem.5b01380

Gayam, V. & Ravi, S. 2017. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. European Journal of Medicinal Chemistry 135: 382-391. https://doi.org/10.1016/j.ejmech.2017.04.063

Hu, Y.Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L.S., Wu, X. & Zhao, F. 2017. Quinoline hybrids and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry 139: 22-47. https://doi.org/10.1016/j.ejmech.2017.07.061

Huang, G., Solano, C.M., Melendez, J., Yu-Alfonzo, S., Boonhok, R., Min, H., Miao, J., Chakrabarti, D. & Yuan, Y. 2021. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. European Journal of Medicinal Chemistry 209: 112889. https://doi.org/10.1016/j.ejmech.2020.112889

Ishmail, F.Z., Melis, D.R., Mbaba, M. & Smith, G.S. 2021. Diversification of quinoline-triazole scaffolds with CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. Journal of Inorganic Biochemistry 215(August 2020): 111328. https://doi.org/10.1016/j.jinorgbio.2020.111328

Ismail, H.M., Barton, V.E., Panchana, M., Charoensutthivarakul, S., Biagini, G.A., Ward, S.A. & O’Neill, P.M. 2016. A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and  artemisinin antimalarials share a common protein alkylation profile. Angewandte Chemie (International Ed. in English) 55(22): 6401-6405. https://doi.org/10.1002/anie.201512062

Joshi, M.C., Wicht, K.J., Taylor, D., Hunter, R., Smith, P.J. & Egan, T.J. 2013. In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles. European Journal of Medicinal Chemistry 69: 338-347. https://doi.org/10.1016/j.ejmech.2013.08.046

Joubert, J.P., Smit, F.J., du Plessis, L., Smith, P.J. & N’Da, D.D. 2014. Synthesis and in vitro biological evaluation of aminoacridines and artemisinin–acridine hybrids. European Journal of Pharmaceutical Sciences 56: 16-27. https://doi.org/https://doi.org/10.1016/j.ejps.2014.01.014

Kholiya, R., Khan, S.I., Bahuguna, A., Tripathi, M. & Rawat, D.S. 2017. N-Piperonyl substitution on aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency. European Journal of Medicinal Chemistry 131: 126-140. https://doi.org/10.1016/j.ejmech.2017.03.007

Kondaparla, S., Manhas, A., Dola, V.R., Srivastava, K., Puri, S.K. & Katti, S.B. 2018. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorganic Chemistry 80(March): 204-211. https://doi.org/10.1016/j.bioorg.2018.06.012

Krogstad, D.J., Gluzman, I.Y., Kyle, D.E., Oduola, A.M., Martin, S.K., Milhous, W.K. & Schlesinger, P.H. 1987. Efflux of chloroquine from Plasmodium falciparum: Mechanism of chloroquine resistance. Science 238(4831): 1283-1285. https://doi.org/10.1126/science.3317830

Kumar, D., Khan, S.I., Tekwani, B.L., Ponnan, P. & Rawat, D.S. 2015. 4-aminoquinoline-pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. European Journal of Medicinal Chemistry 89: 490-502. https://doi.org/10.1016/j.ejmech.2014.10.061

Kumar, S., Saini, A., Gut, J., Rosenthal, P.J., Raj, R. & Kumar, V. 2017. 4-aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. European Journal of Medicinal Chemistry 138: 993-1001. https://doi.org/10.1016/j.ejmech.2017.07.041

Kumari, A., Karnatak, M., Singh, D., Shankar, R., Jat, J.L., Sharma, S., Yadav, D., Shrivastava, R. & Verma, V.P. 2019. Current scenario of artemisinin and its analogues for antimalarial activity. European Journal of Medicinal Chemistry 163: 804-829. https://doi.org/10.1016/j.ejmech.2018.12.007

Lombard, M.C., N’Da, D.D., Tran Van Ba, C., Wein, S., Norman, J., Wiesner, L. & Vial, H. 2013. Potent in vivo antimalarial activity and representative snapshot pharmacokinetic evaluation of artemisinin-quinoline hybrids. Malaria Journal 12(1): 71. https://doi.org/10.1186/1475-2875-12-71

Lombard, M.C., N’Da, D.D., Breytenbach, J.C., Kolesnikova, N.I., Tran Van Ba, C., Wein, S., Norman, J., Denti, P., Vial, H. & Wiesner, L. 2012. Antimalarial and anticancer activities of artemisinin-quinoline hybrid-dimers and pharmacokinetic properties in mice. European Journal of Pharmaceutical Sciences 47(5): 834-841. https://doi.org/10.1016/j.ejps.2012.09.019

Lombard, M.C., N’Da, D.D., Breytenbach, J.C., Smith, P.J. & Lategan, C.A. 2011. Synthesis, in vitro antimalarial and cytotoxicity of artemisinin- aminoquinoline hybrids. Bioorganic and Medicinal Chemistry Letters 21(6): 1683-1686. https://doi.org/10.1016/j.bmcl.2011.01.103

Manohar, S., Tripathi, M. & Rawat, D.S. 2014. 4-aminoquinoline based molecular hybrids as antimalarials: An overview. Current Topics in Medicinal Chemistry 14(14): 1706-1733. https://doi.org/10.2174/1568026614666140808125728

Marinho, J.A., Martins Guimarães, D.S., Glanzmann, N., de Almeida Pimentel, G., Karine da Costa Nunes, I., Gualberto Pereira, H.M., Navarro, M., de Pilla Varotti, F., David da Silva, A. & Abramo, C. 2021. In vitro and in vivo antiplasmodial activity of novel quinoline derivative compounds by molecular hybridization. European Journal of Medicinal Chemistry 215. https://doi.org/10.1016/j.ejmech.2021.113271

Martin, S.K., Oduola, A.M. & Milhous, W.K. 1987. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235(4791): 899-901. https://doi.org/10.1126/science.3544220

Martínez, A., Deregnaucourt, C., Sinou, V., Latour, C., Roy, D., Schrével, J. & Sánchez-Delgado, R.A. 2017. Synthesis of an organo-ruthenium aminoquinoline-trioxane hybrid and evaluation of its activity against Plasmodium falciparum and its toxicity toward normal mammalian cells. Medicinal Chemistry Research 26(2): 473-483. https://doi.org/10.1007/s00044-016-1769-6

Maurya, S.S., Bahuguna, A., Khan, S.I., Kumar, D., Kholiya, R. & Rawat, D.S. 2019. N-substituted aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. European Journal of Medicinal Chemistry 162: 277-289. https://doi.org/10.1016/j.ejmech.2018.11.021

Maurya, S.S., Khan, S.I., Bahuguna, A., Kumar, D. & Rawat, D.S. 2017. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids. European Journal of Medicinal Chemistry 129: 175-185. https://doi.org/10.1016/j.ejmech.2017.02.024

Minić, A., Van de Walle, T., Van Hecke, K., Combrinck, J., Smith, P.J., Chibale, K. & D’hooghe, M. 2020. Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of their electrochemical and antiplasmodial properties. European Journal of Medicinal Chemistry 187: 111963. https://doi.org/10.1016/j.ejmech.2019.111963

Morphy, R. & Rankovic, Z. 2005. Designed multiple ligands. An emerging drug discovery paradigm. Journal of Medicinal Chemistry 48(21): 6523-6543. https://doi.org/10.1021/jm058225d

Muregi, F.W. & Ishih, A. 2010. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug  design. Drug Development Research 71(1): 20-32. https://doi.org/10.1002/ddr.20345

Musonda, C.C., Whitlock, G.A., Witty, M.J., Brun, R. & Kaiser, M. 2009. Chloroquine–astemizole hybrids with potent in vitro and in vivo antiplasmodial activity. Bioorganic & Medicinal Chemistry Letters 19(2): 481-484. https://doi.org/https://doi.org/10.1016/j.bmcl.2008.11.047

Mwande Maguene, G., Lekana-Douki, J.B., Mouray, E., Bousquet, T., Grellier, P., Pellegrini, S., Toure Ndouo, F.S., Lebibi, J. & Pélinski, L. 2015. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline derivatives. European Journal of Medicinal Chemistry 90: 519-525. https://doi.org/10.1016/j.ejmech.2014.11.065

Nisha, Gut, J., Rosenthal, P.J. & Kumar, V. 2014. β-amino-alcohol tethered 4-aminoquinoline-isatin conjugates: Synthesis and antimalarial evaluation. European Journal of Medicinal Chemistry 84: 566-573. https://doi.org/10.1016/j.ejmech.2014.07.064

Noedl, H., Se, Y., Schaecher, K., Smith, B.L., Socheat, D. & Fukuda, M.M. 2008. Evidence of artemisinin-resistant malaria in Western Cambodia. New England Journal of Medicine 359(24): 2619-2620. https://doi.org/10.1056/nejmc0805011

O’Neill, P.M., Amewu, R.K., Nixon, G.L., Bousejra ElGarah, F., Mungthin, M., Chadwick, J., Shone, A.E., Vivas, L., Lander, H., Barton, V., Muangnoicharoen, S., Bray, P.G., Davies, J., Park, B.K., Wittlin, S., Brun, R., Preschel, M., Zhang, K. & Ward, S.A. 2010. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. Angewandte Chemie International Edition 49(33): 5693-5697. https://doi.org/https://doi.org/10.1002/anie.201001026

Opsenica, I.M., Verbić, T., Tot, M., Sciotti, R.J., Pybus, B.S., Djurković-Djaković, O., Slavić, K. & Šolaja, B.A. 2015. Investigation into novel thiophene- and furan-based 4-amino-7-chloroquinolines afforded antimalarials that cure mice. Bioorganic and Medicinal Chemistry 23(9): 2176-2186. https://doi.org/10.1016/j.bmc.2015.02.061

Pandey, S., Agarwal, P., Srivastava, K., RajaKumar, S., Puri, S.K., Verma, P., Saxena, J.K., Sharma, A., Lal, J. & Chauhan, P.M.S. 2013. Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. European Journal of Medicinal Chemistry 66: 69-81. https://doi.org/10.1016/j.ejmech.2013.05.023

Pérez, B.C., Teixeira, C., Figueiras, M., Gut, J., Rosenthal, P.J., Gomes, J.R.B. & Gomes, P. 2012. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials. European Journal of Medicinal Chemistry 54: 887-899. https://doi.org/10.1016/j.ejmech.2012.05.022

Posner, G.H., Wang, D., Cumming, J.N., Oh, C.H., French, A.N., Bodley, A.L. & Shapiro, T.A. 1995. Further evidence supporting the importance of and the restrictions on a  carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. Journal of Medicinal Chemistry 38(13): 2273-2275. https://doi.org/10.1021/jm00013a001

Pretorius, S.I., Breytenbach, W.J., De Kock, C., Smith, P.J. & N’Da, D.D. 2013. Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorganic and Medicinal Chemistry 21(1): 269-277. https://doi.org/10.1016/j.bmc.2012.10.019

Prisinzano, T.E. 2006. Medicinal chemistry: A molecular and biochemical approach. Journal of Medicinal Chemistry 49(11): 3428. https://doi.org/10.1021/jm068018t

Raj, R., Singh, P., Singh, P., Gut, J., Rosenthal, P.J. & Kumar, V. 2013. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluation. European Journal of Medicinal Chemistry 62:  590-596. https://doi.org/10.1016/j.ejmech.2013.01.032

Rani, A., Sharma, A., Legac, J., Rosenthal, P.J., Singh, P. & Kumar, V. 2021. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorganic and Medicinal Chemistry 39(December 2020): 116159. https://doi.org/10.1016/j.bmc.2021.116159

Rani, A., Kumar, S., Legac, J., Adeniyi, A.A., Awolade, P., Singh, P., Rosenthal, P.J. & Kumar, V. 2020. Design, synthesis, heme binding and density functional theory studies of isoindoline-dione-4-aminoquinolines as potential antiplasmodials. Future Medicinal Chemistry 12(3): 193-205. https://doi.org/10.4155/fmc-2019-0260

Rani, A., Legac, J., Rosenthal, P.J. & Kumar, V. 2019. Substituted 1,3-dioxoisoindoline-4-aminoquinolines coupled via amide perangkais: Synthesis, antiplasmodial and cytotoxic evaluation. Bioorganic Chemistry 88(February): 102912. https://doi.org/10.1016/j.bioorg.2019.04.006

Rathore, D., Jani, D., Nagarkatti, R. & Kumar, S. 2006. Heme detoxification and antimalarial drugs - Known mechanisms and future prospects. Drug Discovery Today: Therapeutic Strategies 3(2): 153-158. https://doi.org/10.1016/j.ddstr.2006.06.003

Reddy, P.L., Khan, S.I., Ponnan, P., Tripathi, M. & Rawat, D.S. 2017. Design, synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. European Journal of Medicinal Chemistry 126: 675-686. https://doi.org/10.1016/j.ejmech.2016.11.057

Relitti, N., Federico, S., Pozzetti, L., Butini, S., Lamponi, S., Taramelli, D., D’Alessandro, S., Martin, R.E., Shafik, S.H., Summers, R.L., Babij, S.K., Habluetzel, A., Tapanelli, S., Caldelari, R., Gemma, S. & Campiani, G. 2021. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. European Journal of Medicinal Chemistry 215: 113227. https://doi.org/10.1016/j.ejmech.2021.113227

Ribeiro, C.J.A., Kumar, S.P., Gut, J., Gonçalves, L.M., Rosenthal, P.J., Moreira, R. & Santos, M.M.M. 2013. Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. European Journal of Medicinal Chemistry 69: 365-372. https://doi.org/10.1016/j.ejmech.2013.08.037

Rojas Ruiz, F.A., García-Sánchez, R.N., Estupiñan, S.V., Gómez-Barrio, A., Torres Amado, D.F., Pérez-Solórzano, B.M., Nogal-Ruiz, J.J., Martínez-Fernández, A.R. & Kouznetsov, V.V. 2011. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorganic and Medicinal Chemistry 19(15): 4562-4573. https://doi.org/10.1016/j.bmc.2011.06.025

Sahu, S., Ghosh, S.K., Kalita, J., Dutta, M. & Bhat, H.R. 2016. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS. Experimental Parasitology 163: 38-45. https://doi.org/10.1016/j.exppara.2016.01.010

Saini, A., Kumar, S., Raj, R., Chowdhary, S., Gendrot, M., Mosnier, J., Fonta, I., Pradines, B., & Kumar, V. 2021. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted 4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorganic Chemistry 109(September 2020): 104733. https://doi.org/10.1016/j.bioorg.2021.104733

Sashidhara, K.V., Kumar, M., Modukuri, R.K., Srivastava, R.K., Soni, A., Srivastava, K., Singh, S.V., Saxena, J.K., Gauniyal, H.M. & Puri, S.K. 2012. Antiplasmodial activity of novel keto-enamine chalcone-chloroquine based hybrid pharmacophores. Bioorganic and Medicinal Chemistry 20(9): 2971-2981. https://doi.org/10.1016/j.bmc.2012.03.011

Shalini, L.J., Adeniyi, A.A., Kisten, P., Rosenthal, P.J., Singh, P. & Kumar, V. 2020. Functionalized naphthalimide-4-aminoquinoline conjugates as promising antiplasmodials, with mechanistic insights. ACS Medicinal Chemistry Letters 11(2): 154-161. https://doi.org/10.1021/acsmedchemlett.9b00521

Simon, F. 2006. The trouble with making combination drugs. Nature Reviews Drug Discovery 5(11): 881-882. https://doi.org/10.1038/nrd2188

Singh, K., Kaur, H., Chibale, K., Balzarini, J., Little, S. & Bharatam, P.V. 2012. 2-Aminopyrimidine based 4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure-activity relationship and mode of action studies. European Journal of Medicinal Chemistry 52(January): 82-97. https://doi.org/10.1016/j.ejmech.2012.03.007

Sonawane, D.P., Persico, M., Corbett, Y., Chianese, G., Di Dato, A., Fattorusso, C., Taglialatela-Scafati, O., Taramelli, D., Trombini, C., Dhavale, D.D., Quintavalla, A., & Lombardo, M. 2015. New antimalarial 3-methoxy-1,2-dioxanes: Optimization of cellular pharmacokinetics and pharmacodynamics properties by incorporation of amino and N-heterocyclic moieties at C4. RSC Advances 5(89): 72995-73010. https://doi.org/10.1039/c5ra10785g

Taleli, L., De Kock, C., Smith, P.J., Pelly, S.C., Blackie, M.A.L. & Van Otterlo, W.A.L. 2015. In vitro antiplasmodial activity of triazole-linked chloroquinoline derivatives synthesized from 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine. Bioorganic and Medicinal Chemistry 23(15): 4163-4171A. https://doi.org/10.1016/j.bmc.2015.06.044

Thelingwani, R., Leandersson, C., Bonn, B., Smith, P., Chibale, K. & Masimirembwa, C. 2016. Characterization of artemisinin–chloroquinoline hybrids for potential metabolic liabilities. Xenobiotica 46(3): 234-240. https://doi.org/10.3109/00498254.2015.1070975

Thelingwani, R., Bonn, B., Chibale, K. & Masimirembwa, C. 2014. Physicochemical and drug metabolism characterization of a series of 4-aminoquinoline-3-hydroxypyridin-4-one hybrid molecules with antimalarial activity. Expert Opinion on Drug Metabolism & Toxicology 10(10): 1313-1324. https://doi.org/10.1517/17425255.2014.954547

Van de Walle, T., Boone, M., Van Puyvelde, J., Combrinck, J., Smith, P.J., Chibale, K., Mangelinckx, S. & D’hooghe, M. 2020. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. European Journal of Medicinal Chemistry 198: 112330. https://doi.org/10.1016/j.ejmech.2020.112330

van Schalkwyk, D.A. & Egan, T.J. 2006. Quinoline-resistance reversing agents for the malaria parasite Plasmodium falciparum. Drug Resistance Updates 9(4): 211-226. https://doi.org/https://doi.org/10.1016/j.drup.2006.09.002

Vangapandu, S., Sachdeva, S., Jain, M., Singh, S., Singh, P.P., Kaul, C.L. & Jain, R. 2003. 8-quinolinamines and their pro prodrug conjugates as potent blood-Schizontocidal antimalarial agents. Bioorganic & Medicinal Chemistry 11(21): 4557-4568. https://doi.org/https://doi.org/10.1016/j.bmc.2003.07.003

Walsh, J.J. & Bell, A. 2009. Hybrid drugs for malaria. Current Pharmaceutical Design 15(25):  2970-2985. https://doi.org/http://dx.doi.org/10.2174/138161209789058183

Walsh, J.J., Coughlan, D., Heneghan, N., Gaynor, C. & Bell, A. 2007. A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorganic & Medicinal Chemistry Letters 17(13): 3599-3602. https://doi.org/https://doi.org/10.1016/j.bmcl.2007.04.054

Wang, N., Wicht, K.J., Shaban, E., Ngoc, T.A., Wang, M.Q., Hayashi, I., Hossain, M.I., Takemasa, Y., Kaiser, M., El Tantawy El Sayed, I., Egan, T.J. & Inokuchi, T. 2014. Synthesis and evaluation of artesunate-indoloquinoline hybrids as antimalarial drug candidates. MedChemComm 5(7): 927-931. https://doi.org/10.1039/c4md00091a

White, N.J. 2007. Cardiotoxicity of antimalarial drugs. The Lancet Infectious Diseases 7(8): 549-558. https://doi.org/10.1016/S1473-3099(07)70187-1

WHO. 2013. The cardiotoxicity of antimalarials. Archives de Pediatrie Vol. 20. https://doi.org/10.1016/S0929-693X(13)71340-X

Zhu, F., Guiguemde, W.A., Sigal, M.S. & Wilson, E.B. 2011. Analogs for antimalarial activity. J. Med. Chem. 54(20): 7084-7093. https://doi.org/10.1021/jm200636z.Synthesis

 

*Corresponding author; email: drizz@ukm.edu.my

 

 

 

 

previous