Sains Malaysiana 51(10)(2022): 3481-3493

http://doi.org/10.17576/jsm-2022-5110-29

 

Pencirian Jangkitan Plasmodium berghei NK65 pada Mencit ICR sebagai Model Jangkitan Malaria Teruk

(Characterisation of Plasmodium berghei NK65 Infection in ICR Mice as a Severe Malarial Infection Model)

 

AMATUL HAMIZAH ALI1, WAN ROZIANOOR MOHD HASSAN2, DHIANA EFANI DAHARI3, NOOR EMBI3, HASIDAH MOHD SIDEK3, RUSLIZA BASIR4, HANI KARTINI AGUSTAR5 & JALIFAH LATIP1,*

 

1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Fakulti Sains Gunaan, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

3Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

4Unit Farmakologi, Jabatan Anatomi Manusia, Fakulti Perubatan dan Sains Kesihatan, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

5Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 13 March 2022/Accepted: 4 July 2022

 

Abstrak

Malaria teruk atau ‘severe’ kebiasaannya disebabkan oleh jangkitan Plasmodium falciparum. Jangkitan Plasmodium falciparum pada manusia boleh menyebabkan kerosakan organ, anemia teruk, komplikasi serius, koma dan kematian. Bagi tujuan memahami patogenesis malaria teruk, model haiwan digunakan dalam kajian kali ini bagi mengenal pasti sama ada gabungan hos-parasit daripada mencit ICR dengan Plasmodium berghei NK65 boleh menyebabkan jangkitan malaria teruk pada hos. Pencirian jangkitan P. berghei ANKA pernah dilakukan sebelum ini terhadap mencit ICR; walau bagaimanapun, pencirian jangkitan P. berghei NK65 secara terperinci terhadap mencit ICR dalam kajian ini adalah pertama kali dilaporkan. Inokulasi sel darah merah (RBC) terjangkit-P. berghei NK65 (2 ´ 107 parasit RBC (pRBC)/mL) dilakukan terhadap mencit ICR dengan suntikan secara intraperitoneum. Pemantauan perubahan ciri fizikal seperti berat, suhu mencit, kematian mencit, pos mortem, histologi dan aras sitokin inflamasi yang terhasil selepas jangkitan direkod untuk analisis. Strain P. berghei NK65 menghasilkan jangkitan tahap teruk terhadap mencit ICR iaitu paras parasitemia melebihi 50% pada hari ke-10 selepas jangkitan diikuti kematian. Analisis histopatologi menunjukkan jangkitan ini menyebabkan perubahan pada tisu serebrum, perlekatan leukosit pada endotelium dan pensekuesteran pRBC dalam salur darah serebrum serta pendarahan intravaskular. Selepas jangkitan, pensekuesteran pRBC dan pengumpulan pigmen malaria turut dilihat pada organ utama mencit. Tambahan lagi, edema pulmonari, pembentukan membran hialin pada peparu dan pendarahan kortikal pada ginjal dilihat pada mencit terjangkit. Sitokin proinflamasi (TNF-α, IFN-γ, dan IL-18) dan sitokin antiinflamasi (IL-10 dan IL-4) juga meningkat dalam serum mencit terjangkit. Secara rumusannya, model jangkitan mencitICR-P. berghei NK65 yang digunakan dalam kajian ini menunjukkan ciri-ciri jangkitan malaria teruk. Hasil daripada kajian ini boleh digunakan sebagai asas untuk memahami patogenesis bagi malaria teruk pada manusia dan model jangkitan malaria haiwan pada masa akan datang.

 

Kata kunci: Histopatologi; malaria; mencit ICR; model jangkitan haiwan; Plasmodium berghei NK65; sitokin inflamasi

 

Abstract

Severe malaria is commonly caused by Plasmodium falciparum infection. Plasmodium falciparum infection in human can cause organ damage, severe anaemia, serious complications, coma and death. For the purpose of understanding the pathogenesis of severe malaria, an animal model was used in this study to examine whether the combination of host-parasite from ICR mice with Plasmodium berghei NK65 caused severe malaria infection in the host. Characterisation of P. berghei ANKA infection has been performed previously on ICR mice, however, the detailed histopathological view of P. berghei NK65 infection on ICR mice in this study was first reported. Inoculation of the P. berghei NK65-infected red blood cells (RBCs) (2×107 parasitised RBCs (pRBC)/mL) were performed on ICR mice by intraperitoneal injection. Changes in physical characteristics such as body weight, temperature, mortality, post-mortem, histopathology and levels of inflammatory cytokines resulting after infection were recorded for analysis. The P. berghei NK65 strain produced a severe level of infection in ICR mice i.e., the degree of parasitaemia exceeded 50% on day-10 after infection followed by death. Histopathological analysis showed that the infection caused changes in cerebral tissue, accumulation of leukocytes to the endothelium and sequestration of pRBCs in the cerebral blood vessels as well as intravascular haemorrhage. After infection, pRBC sequestration and accumulation of malaria pigments were also observed in the major organs. In addition, pulmonary oedema, hyaline membrane formation in the lungs and cortical haemorrhage in the kidneys were seen in infected mice. Proinflammatory cytokines (TNF-α, IFN-γ, and IL-18) and anti-inflammatory cytokines (IL-10 and IL-4) were also increased in the serum of infected mice. In summary, the ICR mice-P. berghei NK65 infection model used in this study showed characteristics of severe malaria infection in human. The insights from this study can be used as a basis for understanding the pathogenesis of severe malaria in human and models of rodent malarial infection in the future.

 

Keywords: Animal infection model; histopathology; ICR mice; inflammatory cytokines; malaria; Plasmodium berghei NK65

 

REFERENCES

Aizuddin, N.N.F., Ganesan, N., Ng, W.C., Ali, A.H., Ibrahim, I., Basir, R., Embi, N. & Hasidah, M.S. 2020. GSK3β: A plausible molecular target in the cytokine-modulating effect of exogenous insulin in a murine model of malarial infection. Tropical Biomedicine 37(4): 1105-1116.

Amal, R.N., Noor Hayati, M.I. & Chan, B.T.E. 2006. A retrospective study on malaria cases admitted to Hospital Universiti Kebangsaan Malaysia (HUKM). Malaysian Journal of Medicine and Health Sciences 2: 41-49.

Angulo, I. & Fresno, M. 2002. Cytokines in the pathogenesis of and protection against malaria. Clinical and Diagnostic Laboratory Immunology 9(6): 1145-1152.

Artavanis‐Tsakonas, K., Tongren, J.E. & Riley, E.M. 2003. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clinical & Experimental Immunology 133(2): 145-152.

Bagot, S., Campino, S., Penha-Gonçalves, C., Pied, S., Cazenave, P.A. & Holmberg, D. 2002. Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proceedings of the National Academy of Sciences 99(15): 9919-9923.

Basir, R., Rahiman, S.F., Hasballah, K., Chong, W.C., Talib, H., Yam, M.F., Jabbarzare, M., Tie, T.H., Othman, F., Moklas, M.A.M. & Abdullah, W.O. 2012. Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iranian Journal of Parasitology 7(4): 62.

Baptista, F.G., Pamplona, A., Pena, A.C., Mota, M.M., Pied, S. & Vigário, A.M. 2010. Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infection and Immunity 78(9): 4033-4039.

Craig, A.G., Grau, G.E., Janse, C., Kazura, J.W., Milner, D., Barnwell, J.W., Turner, G. & Langhorne, J. 2012. The role of animal models for research on severe malaria. PLoS Pathogens 8(2): e1002401.

De Souza, J.B. & Riley, E.M. 2002. Cerebral malaria: The contribution of studies in animal models to our understanding of immunopathogenesis. Microbes and Infection 4(3): 291-300.

Dian, N.D., Mohd Salleh, A.F., Rahim, M.A.F.A., Munajat, M.B., Abd Manap, S.N.A., Ghazali, N., Hassan, N.W. & Idris, Z.M. 2021. Malaria cases in a tertiary hospital in Kuala Lumpur, Malaysia: A 16-Year (2005-2020) retrospective review. Tropical Medicine and Infectious Disease 6: 177.

Druilhe, P., Hagan, P. & Rook, G.A. 2002. The importance of models of infection in the study of disease resistance. Trends in Microbiology 10(10): s38-s46.

Egan, T.J. 2002. Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. Journal of Inorganic Biochemistry 91(1): 19-26.

Ghali, J.K. 2009. Anemia and heart failure. Current Opinion in Cardiology 24(2): 172-178.

Gimenez, F., de Lagerie, S.B., Fernandez, C., Pino, P. & Mazier, D. 2003. Tumor necrosis factor α in the pathogenesis of cerebral malaria. Cellular and Molecular Life Sciences 60(8): 1623-1635.

Hart, B.L. 1988. Biological basis of the behavior of sick animals. Neuroscience & Biobehavioral Reviews 12(2): 123-137.

Hunt, N.H., Golenser, J., Chan-Ling, T., Parekh, S., Rae, C., Potter, S., Medana, I.M., Miu, J. & Ball, H.J. 2006. Immunopathogenesis of cerebral malaria. International Journal for Parasitology 36(5): 569-582.

Lacerda-Queiroz, N., Lima, O.C.O., Carneiro, C.M., Vilela, M.C., Teixeira, A.L., Teixeira-Carvalho, A., Araújo, M.S.S., Martins-Filho, O.A., Braga, É.M. & Carvalho-Tavares, J. 2011. Plasmodium berghei NK65 induces cerebral leukocyte recruitment in vivo: An intravital microscopic study. Acta Tropica 120(1): 31-39.

Lai, M.Y., Rafieqin, N., Lee, P.L., Rawa, A., Dzul, S., Yahaya, N., Abdullah, F.H., Othman, N., Jelip, J., Ooi, C.H. & Ibrahim, J. 2021. High incidence of Plasmodium knowlesi malaria compared to other human malaria species in several hospitals in Malaysia. Tropical Biomedicine 38(3): 248-253.

Li, C., Seixas, E. & Langhorne, J. 2001. Rodent malarias: The mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Medical Microbiology and Immunology 189(3): 115-126.

Mackintosh, C.L., Beeson, J.G. & Marsh, K. 2004. Clinical features and pathogenesis of severe malaria. Trends in Parasitology 20(12): 597-603.

Menendez, C., Fleming, A.F. & Alonso, P.L. 2000. Malaria-related anaemia. Parasitology Today 16(11): 469-476.

Miller, L.H., Baruch, D.I., Marsh, K. & Doumbo, O.K. 2002. The pathogenic basis of malaria. Nature 415(6872): 673-679.

Nagamine, Y., Hayano, M., Kashiwamura, S.I., Okamura, H., Nakanishi, K., Krudsod, S., Wilairatana, P., Looareesuwan, S. & Kojima, S. 2003. Involvement of interleukin-18 in severe Plasmodium falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 97(2): 236-241.

Nayak, K.C., Kumar, S., Gupta, B.K., Kumar, S., Gupta, A., Prakash, P. & Kochar, D.K. 2014. Clinical and histopathological profile of acute renal failure caused by falciparum and vivax monoinfection: An observational study from Bikaner, northwest zone of Rajasthan, India. Journal of Vector Borne Diseases 51(1): 40.

Niikura, M., Inoue, S.I. & Kobayashi, F. 2011. Role of interleukin-10 in malaria: Focusing on coinfection with lethal and nonlethal murine malaria parasites. BioMed Research International 2011: 383962.

Nimir, A.R., Isa, N.H.M., Chan, B.T.E., Ghauth, I.M., Salleh, F.M. & Rahman, R.A. 2006. Severity of malaria cases reported in urban and rural hospitals in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 37(5): 831.

Pathak, V.A. & Ghosh, K. 2016. Erythropoiesis in malaria infections and factors modifying the erythropoietic response. Anemia 2016: 9310905.

Perkins, D.J., Were, T., Davenport, G.C., Kempaiah, P., Hittner, J.B. & Ong'echa, J.M. 2011. Severe malarial anemia: Innate immunity and pathogenesis. International Journal of Biological Sciences 7(9): 1427.

Rahim, M.A.F.A., Munajat, M.B. & Idris, Z.M. 2020. Malaria distribution and performance of malaria diagnostic methods in Malaysia (1980-2019): A systematic review. Malaria Journal 19(1): 1-12.

Rivera, N., Romero, S.E., Menchaca, Á., Zepeda, A., García, L.E., Salas, G., Romero, L. & Malagón, F. 2013. Blackwater fever like in murine malaria. Parasitology Research 112(3): 1021-1029.

Sexton, A.C., Good, R.T., Hansen, D.S., Ombrain, M.C.D., Buckingham, L., Simpson, K. & Schofield, L. 2004. Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. Journal of Infectious Diseases 189(7): 1245-1256.

Sowunmi, A., Gbotosho, G.O., Adedeji, A.A., Fateye, B.A., Sabitu, M.F., Happi, C.T. & Fehintola, F.A. 2007. Effects of acute Plasmodium falciparum malaria on body weight in children in an endemic area. Parasitology Research 101(2): 343-349.

Stoute, J.A., Odindo, A.O., Owuor, B.O., Mibei, E.K., Opollo, M.O. & Waitumbi, J.N. 2003. Loss of red blood cell–complement regulatory proteins and increased levels of circulating immune complexes are associated with severe malarial anemia. The Journal of Infectious Diseases 187(3): 522-525.

Sullivan, A.D., Ittarat, I. & Meshnick, S.R. 1996. Patterns of haemozoin accumulation in tissue. Parasitology 112(3): 285-294.

Urban, B.C. & Roberts, D.J. 2002. Malaria, monocytes, macrophages and myeloid dendritic cells: Sticking of infected erythrocytes switches off host cells. Current Opinion in Immunology 14(4): 458-465.

Urban, B.C., Hien, T.T., Day, N.P., Phu, N.H., Roberts, R., Pongponratn, E., Jones, M., Mai, N.T., Bethell, D., Turner, G.D. & Ferguson, D. 2005. Fatal Plasmodium falciparum malaria causes specific patterns of splenic architectural disorganization. Infection and Immunity 73(4): 1986-1994.

Van den Steen, P.E., Deroost, K., Deckers, J., Van Herck, E., Struyf, S. & Opdenakker, G., 2013. Pathogenesis of malaria-associated acute respiratory distress syndrome. Trends in Parasitology 29(7): 346-358.

World Health Organization 2021. Geneva: World Malaria Report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021. Accessed on 1 March 2022.

World Health Organization. 2000. Severe falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 94: 1-90.

Yoshimoto, T., Takahama, Y., Wang, C.R., Yoneto, T., Waki, S. & Nariuchi, H. 1998. A pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK65 infection. The Journal of Immunology 160(11): 5500-5505.

 

*Corresponding author; email: jalifah@ukm.edu.my

 

 

 

 

 

previous