Sains Malaysiana 51(11)(2022): 3523-3537
http://doi.org/10.17576/jsm-2022-5111-02
Rate
and Efficiency of Organic Carbon Assimilation by Aquacultured Juvenile Sandfish Holothuria scabra
(Kadar dan Kecekapan Asimilasi Karbon Organik oleh Ikan
Pasir Juvenil Holothuria scabra Akuakultur)
A’AN
JOHAN WAHYUDI1,*, LISA FAJAR INDRIANA2,
MUHAMMAD FIRDAUS2, HANIF BUDI PRAYITNO1 & HANNY
MEIRINAWATI1
1Research
Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430 Indonesia
2Research
Center for Marine and Terrestrial Bio Industry, National Research and
Innovation Agency, Teluk Kodek, Pemenang, Lombok Utara 83352 Indonesia
Received:
9 February 2022/Accepted: 28 June 2022
Abstract
Diet
assimilation rate is crucial to the growth and survival of Holothuria scabra juveniles during culture. To
understand the assimilation rate and efficiency we assess organic carbon
assimilation, which is closely related to the growth and source of variations
in diet. We conducted a two-factor experiment, i.e., juvenile origin (cultured
and wild H. scabra juveniles), and diet
treatment (one control with no additional diet, and three additional diets,
i.e., rice bran, dried cow manure, and seagrass Enhalus acoroides extract). We monitored the amounts of each diet that the juveniles consumed and
the fecal pellets they egested. The diet, sediment, body walls, and organic
carbon content of the fecal pellets were measured using an elemental analyzer
combined with an isotope ratio mass spectrometer. Exponential growth was seen
in the juveniles fed with rice bran, which had a fecal pellet egestion of
0.12–0.21 gC/d. Stable isotope analysis showed that
the contribution of the diet proportion to the growth of the sandfish did not
exceed 30%. The range of the assimilation rate was 35.3–62.4 gC/d. The average assimilation efficiency of organic carbon
was 43.6 ± 27.7% (max 57.9%). Considering the assimilation rate and efficiency,
we suggest a feeding interval of once every two days or twice per week at a
rate of 3–5% of the total H. scabra biomass
for a juvenile culture system.
Keywords: Assimilation; growth rate; Holothuria scabra; organic
carbon; rearing culture sandfish
Abstrak
Kadar
asimilasi diet adalah penting untuk pertumbuhan dan kemandirian juvenil Holothuria
scabra semasa pengkulturan. Untuk memahami kadar asimilasi dan kecekapan,
kami menilai asimilasi karbon organik, yang berkait rapat dengan pertumbuhan
dan punca variasi dalam diet. Kami menjalankan uji kaji dua faktor, iaitu,
asal juvenil (juvenil H. scabra yang dikultur dan liar) dan rawatan diet
(satu kawalan tanpa diet tambahan dan tiga diet tambahan; dedak padi, baja tahi
lembu dan ekstrak rumput laut Enhalus acoroides). Kami memantau jumlah
setiap diet yang diambil oleh juvenil dan pelet najis yang dikeluarkan. Diet,
sedimen, dinding badan serta kandungan karbon organik pelet najis diukur
menggunakan penganalisis unsur yang digabungkan dengan spektrometer jisim nisbah
isotop. Pertumbuhan eksponen dilihat pada juvenil yang diberi makan dedak padi,
yang mempunyai penghadaman pelet najis 0.12–0.21 gC/d. Analisis isotop stabil
menunjukkan bahawa sumbangan perkadaran diet kepada pertumbuhan ikan pasir
tidak melebihi 30%. Julat kadar asimilasi ialah 35.3–62.4 gC/d. Purata
kecekapan asimilasi karbon organik ialah 43.6 ± 27.7% (maks 57.9%).
Memandangkan kadar asimilasi dan kecekapan, kami mencadangkan sela pemakanan
sekali setiap dua hari atau dua kali seminggu pada kadar 3-5% daripada jumlah
biojisim H. scabra untuk sistem kultur juvenil.
Kata kunci:
Asimilasi; Holothuria scabra; kadar pertumbuhan; karbon organik;
ternakan ikan pasir
REFERENCES
Ahmed,
H., Shakeel, H., Naeem, S. & Sano, K. 2018. Pilot study on grow-out culture
of sandfish (Holothuria scabra)
in bottom-set sea cages in lagoon. SPC Beche-de-mer Information Bulletin 38: 45-50.
Altamirano,
J.P., Recente, C.P. & Rodriguez, J.C. 2017.
Substrate preference for burying and feeding of sandfish Holothuria scabra juveniles. Fisheries Research 186:
514-523. https://doi.org/10.1016/j.fishres.2016.08.011
Battaglene,
S.C., Seymour, J.E. & Ramofafia, C. 1999.
Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture 178(3-4): 293-322. https://doi.org/10.1016/S0044-8486(99)00130-1
Bordbar,
S., Anwar, F. & Saari, N. 2011. High-value
components and bioactives from sea cucumbers for
functional foods - A review. Marine Drugs 9(10): 1761-1805. https://doi.org/10.3390/md9101761
Bowman,
W. 2012. Sandfish production and development of sea ranching in Northern
Australia. In Asia-Pacific Tropical Sea Cucumber Aquaculture, edited by
Hair, C., Pickering, T. & Mills, D. Proceedings of an International
Symposium, Noumea, New Caledonia, 15-17 February,
2011. Australian Centre for International Agricultural Research, Canberra. pp.
75-78.
Capone,
D.G., Bronk, D.A., Mulholland, M.R. & Carpenter,
E.J. 2008. Nitrogen in the marine environment. In Nitrogen in the Marine
Environment, 2nd ed., edited by Capone, D.G., Bronk,
D.A., Mulholland, M.R. & Carpenter, E.J. Elsevier. https://doi.org/10.1016/B978-0-12-372522-6.X0001-1
Ceccarelli,
D.M., Logan, M. & Purcell, S.W. 2018. Analysis of optimal habitat for
captive release of the sea cucumber Holothuria scabra. Marine Ecology Progress Series 588: 85-100. https://doi.org/10.3354/meps12444
Chen,
J., Ren, Y., Wang, G., Xia, B. & Li, Y. 2018. Dietary supplementation of biofloc influences growth performance, physiological
stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & Shellfish Immunology 72: 143-152. https://doi.org/10.1016/j.fsi.2017.10.061
Domínguez-Godino, J.A. & González-Wangüemert,
M. 2019. Assessment of Holothuria arguinensis feeding rate, growth and absorption
efficiency under aquaculture conditions. New Zealand Journal of Marine and
Freshwater Research 53(1): 60-76. https://doi.org/10.1080/00288330.2018.1480499
Domínguez-Godino, J.A., Slater, M.J., Hannon, C. & González-Wangüermert, M. 2015. A new species for sea cucumber
ranching and aquaculture: Breeding and rearing of Holothuria arguinensis. Aquaculture 438: 122-128. https://doi.org/10.1016/j.aquaculture.2015.01.004
Drazen,
J.C., Reisenbichler, K.R. & Robison, B.H. 2007. A
comparison of absorption and assimilation efficiencies between four species of
shallow- and deep-living fishes. Marine Biology 151(4): 1551-1558. https://doi.org/10.1007/s00227-006-0596-6
Duarte,
C. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67:
201-207. https://doi.org/10.3354/meps067201
Duy,
N.D. 2012. Large-scale sandfish production from pond culture in Vietnam. In Asia-Pacific
Tropical Sea Cucumber Aquaculture, edited by Hair, C., Pickering, T. &
Mills, D. Proceedings of an International Symposium, Noumea,
New Caledonia, 15-17 February, 2011. Australian Centre for International
Agricultural Research, Canberra. pp. 34-39.
Duy,
N.D.Q., Francis, D.S. & Southgate, P.C. 2017. The nutritional value of live
and concentrated micro-algae for early juveniles of sandfish, Holothuria scabra. Aquaculture 473: 97-104. https://doi.org/10.1016/j.aquaculture.2017.01.028
Eeckhaut,
I., Lavitra, T., Rasoforinina,
R., Rabenevanana, M.W., Gildas,
P. & Jangoux, M. 2008. Madagascar Holothurie SA: The first trade company based on sea
cucumber aquaculture in Madagascar. SPC Beche-de-mer Information Bulletin 28: 22-23.
Fry,
B. & Sherr, E.B. 1989. δ13C
measurements as indicators of carbon flow in marine and freshwater ecosystems.
In Stable Isotopes in Ecological Research. Ecological Studies, vol.
68, edited by Rundel, P.W., Ehleringer,
J.R. & Nagy, K.A. New York: Springer-Verlag.
Gao,
Q.F., Wang, Y., Dong, S., Sun, Z. & Wang, F. 2011. Absorption of different
food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata:
Holothuroidea): Evidence from carbon stable isotope. Aquaculture 319(1-2):
272-276. https://doi.org/10.1016/j.aquaculture.2011.06.051
Hair,
C., Pickering, T., Meo, S., Vereivalu,
T., Hunter, J. & Cavakiqali, L. 2011. Sandfish
culture in Fiji Islands. SPC Beche-de-mer Information Bulletin 31: 3-11.
Hair,
C., Mills, D.J., McIntyre, R. & Southgate, P.C. 2016. Optimising methods for community-based sea cucumber ranching: Experimental releases of
cultured juvenile Holothuria scabra into seagrass meadows in Papua New Guinea. Aquaculture
Reports 3: 198-208. https://doi.org/10.1016/j.aqrep.2016.03.004
Indriana, L., Wahyudi,
A. & Kunzmann, A. 2018. Assimilation dynamics of
different diet sources by the sea cucumber Holothuria scabra, with evidence from stable isotope
signature. Annual Research & Review in Biology 28(2): 1-10. https://doi.org/10.9734/ARRB/2018/42591
Indriana, L.F., Firdaus, M., Supono, S. & Munandar, H.
2017. Survival rate and growth of juvenile sandfish (Holothuria scabra) in various rearing conditions. Marine
Research in Indonesia 42(1): 11. https://doi.org/10.14203/mri.v41i2.156
Juinio-Meñez,
M.A., Tech, E.D., Ticao, I.P., Gorospe, J.R., Edullantes, C.M.A. & Rioja, R.A.V. 2017. Adaptive and
integrated culture production systems for the tropical sea cucumber Holothuria scabra. Fisheries
Research 186: 502-513. https://doi.org/10.1016/j.fishres.2016.07.017
Lavitra,
T., Rasolofonirina, R. & Eeckhaut,
I. 2010. The effect of sediment quality and stocking density on survival and
growth of the sea cucumber Holothuria scabra reared in nursery ponds and sea pens. West
Indian Ocean Journal Marine Science 9: 153-164.
Liu,
Y., Dong, S., Tian, X., Wang, F. & Gao, Q. 2010. The effect of different
macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquaculture Research 41(11): e881-e885. https://doi.org/10.1111/j.1365-2109.2010.02582.x
Mathieu-Resuge, M., Le Grand, F., Schaal,
G., Kraffe, E., Lorrain, A., Letourneur,
Y., Lemonnier, H., Benoît, J. & Hochard, S. 2020. Assimilation of shrimp farm sediment by Holothuria scabra:
A coupled fatty acid and stable isotope approach. Aquatic Living Resources 33: 3.
Meirinawati,
H., Prayitno, H.B., Indriana,
L.F., Firdaus, M. & Wahyudi, A.J. 2020. Water
quality assessment and monitoring of closed rearing system of the sea cucumber Holothuria scabra. ASEAN
Journal on Science and Technology for Development 37(2): 73-80. https://doi.org/10.29037/AJSTD.624
Mercier,
A., Battaglene, S.C. & Hamel, J.F. 1999. Daily
burrowing cycle and feeding activity of juvenile sea cucumbers Holothuria scabra in response to environmental factors. Journal of Experimental Marine Biology
and Ecology 239(1): 125-156. https://doi.org/10.1016/S0022-0981(99)00034-9
Mills,
D., Duy, N.D., Juinio-Me˜nez,
M.A., Raison, C. & Zarate, J. 2012. Overview of sea cucumber aquaculture
and sea ranching research in the South-East Asian region. In Asia-Pacific
Tropical Sea Cucumber Aquaculture, edited by Hair, C., Pickering, T. &
Mills, D. Proceeding of an International Symposium, Noumea,
New Caledonia, 15-17 February 2011. Australian Centre for International
Agricultural Research, Canberra. pp. 22-31.
Mohammadizadeh, F., Ehsanpor, M., Afkhami, M., Mokhlesi, A., Khazaali, A. & Montazeri, S.
2013. Evaluation of antibacterial, antifungal, and cytotoxic effects of Holothuria scabra from the North Coast of the Persian Gulf. Journal de Mycologie Médicale 23(4): 225-229. https://doi.org/10.1016/j.mycmed.2013.08.002
Namukose,
M., Msuya, F., Ferse, S.,
Slater, M. & Kunzmann, A. 2016. Growth
performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum:
Integrated mariculture and effects on sediment organic
characteristics. Aquaculture Environment Interactions 8: 179-189. https://doi.org/10.3354/aei00172
Nelson,
E.J., MacDonald, B.A. & Robinson, S.M.C. 2012. The absorption efficiency of
the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive
integrated multi-trophic aquaculture (IMTA) species. Aquaculture 370-371: 19-25. https://doi.org/10.1016/j.aquaculture.2012.09.029
Olavides,
R.D., Rodriguez, B.D. & Juinio-Me˜nez, M.A. 2011.
Simultaneous mass spawning of Holothuria scabra in sea ranching sites in Bolinao and Andamunicipalities, Philippines. SPC Beche-de-mer Information Bulletin 31: 23-24.
Panigrahi,
A., Sundaram, M., Chakrapani, S., Rajasekar, S., Syama Dayal, J. & Chavali, G.
2019. Effect of carbon and nitrogen ratio (C:N)
manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc‐based rearing
system. Aquaculture Research 50(1): 29-41. https://doi.org/10.1111/are.13857
Peterson,
B.J., Howarth, R.W. & Garritt,
R.H. 1985. Multiple stable isotopes used to trace the flow of organic matter in
estuarine food webs. Science 227(4692): 1361-1363. https://doi.org/10.1126/science.227.4692.1361
Piola,
R.F., Moore, S.K. & Suthers, I.M. 2006. Carbon and nitrogen stable isotope
analysis of three types of oyster tissue in an impacted estuary. Estuarine,
Coastal and Shelf Science 66(1-2): 255-266. https://doi.org/10.1016/j.ecss.2005.08.013
Post,
D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods,
and assumptions. Ecology 3: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
Purcell,
S.W. 2004. Criteria for release strategies and evaluating the restocking of sea
cucumbers. In Advances in Sea Cucumber Aquaculture and Management, FAO
Fisheries Technical Paper No. 463, edited by Lovatelli,
A., Conand, C., Purcell, S., Uthicke,
S., Hamel, J-F. & Mercier, A. Rome: FAO. pp. 181-191.
Purcell,
S.W. & Simutoga, M. 2008. Spatio-temporal
and size-dependent variation in the success of releasing cultured sea cucumbers
in the wild. Reviews in Fisheries Science 16(1-3): 204-214. https://doi.org/10.1080/10641260701686895
Purcell,
S.W., Williamson, D.H. & Ngaluafe, P. 2018.
Chinese market prices of beche-de-mer:
Implications for fisheries and aquaculture. Marine Policy 91: 58-65. https://doi.org/10.1016/j.marpol.2018.02.005
Purcell,
S.W., Hair, C.A. & Mills, D.J. 2012. Sea cucumber culture, farming, and sea
ranching in the tropics: Progress, problems, and opportunities. Aquaculture 368-369: 68-81. https://doi.org/10.1016/j.aquaculture.2012.08.053
Robinson,
G. & Pascal, B. 2012. Sea cucumber farming experiences in south-west
Madagascar. In Asia-Pacific Tropical Sea Cucumber Aquaculture,
edited by Hair, C.A., Pickering, T.D. & Mills, D.J. Australian Centre for
International Agricultural Research, Canberra. pp. 142-155.
Robinson, G., Slater, M.J., Jones,
C.L.W. & Stead, S.M. 2013. Role of sand as substrate and dietary component
for juvenile sea cucumber Holothuria scabra. Aquaculture 392-395: 23-25. https://doi.org/10.1016/j.aquaculture.2013.01.036
Sembiring,
S.B.M., Wardana, I.K., Giri,
N.A. & Haryanti, H. 2017. Keragaan rematurasi gonad induk teripang pasir, Holothuria scabra dengan pemberian jenis pakan berbeda. Jurnal Riset Akuakultur 12(2): 147-159. https://doi.org/10.15578/jra.12.2.2017.147-159
Skewes,
T., Dennis, D., Donovan, A. & Ellis, N. 2004. Conversion Ratios for
Commercial beche-de-mer Species in Torres Strait. Australian Fisheries Management Authority Torres
Strait Research Program Final Report. In Project Number: R02/1195.
Shi,
C., Dong, S., Wang, F., Gao, Q. & Tian, X. 2015. Effects of the sizes of
mud or sand particles in feed on growth and energy budgets of young sea
cucumber (Apostichopus japonicus). Aquaculture 440: 6-11. https://doi.org/10.1016/j.aquaculture.2015.01.028
Sinsona,
M.J. & Juinio-Meñez, M.A. 2018. Effects of
sediment enrichment with macroalgae, Sargassum spp., on the behavior,
growth, and survival of juvenile sandfish, Holothuria scabra. Aquaculture Reports 12: 56-63. https://doi.org/10.1016/j.aqrep.2018.09.002
Song, X., Xu, Q., Zhou, Y., Lin, C.
& Yang, H. 2017. Growth, feed utilization, and energy budgets of the sea
cucumber Apostichopus japonicus with
different diets containing the green tide macroalgae Chaetomorpha linum and the seagrass Zostera marina. Aquaculture 470: 157-163. https://doi.org/10.1016/j.aquaculture.2016.12.035
Sroyraya, M., Hanna, P.J., Siangcham, T., Tinikul, R., Jattujan, P., Poomtong, T. & Sobhon, P. 2017. Nutritional components of the sea cucumber Holothuria scabra. Functional Foods in Health and Disease 7(3): 168. https://doi.org/10.31989/ffhd.v7i3.303
Stock, B.C. & Semmens, B.X.
2016. MixSIAR GUI User Manual. Version
3.1. https://doi.org/10.5281/zenodo.47719
Sun,
Z., Gao, Q., Dong, S., Shin, P. & Wang, F. 2012. Estimates of carbon
turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope
analysis: The role of metabolism and growth. Marine Ecology Progress Series 457: 101-112. https://doi.org/10.3354/meps09760
Taylor,
A.L., Nowland, S.J., Hearnden,
M.N., Hair, C.A. & Fleming, A.E. 2016. Sea ranching release techniques for
cultured sea cucumber Holothuria scabra (Echinodermata: Holothuroidea) juveniles within
the high-energy marine environments of northern Australia. Aquaculture 465: 109-116. https://doi.org/10.1016/j.aquaculture.2016.08.031
Wang,
X., Lu, X., Li, F. & Yang, G. 2014. Effects of temperature and
carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of
dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS ONE 9(5): e97265. https://doi.org/10.1371/journal.pone.0097265
Wahyudi,
A.J. & Afdal. 2019. The origin of the suspended
particulate matter in the seagrass meadow of tropical waters, an evidence of
the stable isotope signatures. Acta Oceanologica Sinica38: 136-143. https://doi.org/10.1007/s13131-019-1380-z
Wahyudi,
A.J., Afdal, A. & Meirinawati,
H. 2019. Stable carbon isotope signature of particulate organic matter in the
Southwestern Sumatran Waters of the Eastern Indian Ocean. ASEAN Journal on
Science and Technology for Development 36(2): 35-43. https://doi.org/10.29037/ajstd.555
Wahyudi,
A.J., Meirinawati, H., Prayitno,
H.B., Suratno, Surinati, D.
& Hernawan, U.E. 2019. The material origin of the
particulate organic matter (POM) in the Eastern Indonesian waters. AIP
Conference Proceedings. 2175(1): 020047. https://doi.org/10.1063/1.5134611
Wahyudi,
A.J., Wada, S., Aoki, M. & Hama, T. 2013. Stable isotope signature and
pigment biomarker evidence of the diet sources of Gaetice depressus (Crustacea: Eubrachyura: Varunidae) in a boulder shore ecosystem. Plankton
and Benthos Research 8(2): 55-67. https://doi.org/10.3800/pbr.8.55
Watanabe,
S., Sumbing, J.G. & Lebata-Ramos,
M.J.H. 2014. Growth pattern of the tropical sea cucumber, Holothuria scabra, under captivity. Japan Agricultural
Research Quarterly 48(4): 457-464. https://doi.org/10.6090/JARQ.48.457
Xu,
Q., Zhang, L., Zhang, T., Zhang, X. & Yang, H. 2017. Functional groupings
and food web of an artificial reef used for sea cucumber aquaculture in
northern China. Journal of Sea Research 119: 1-7. https://doi.org/10.1016/j.seares.2016.10.005
Yokoyama,
H. 2013. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages - Potential for integrated
multi-trophic aquaculture. Aquaculture 372-375: 28-38. https://doi.org/10.1016/j.aquaculture.2012.10.022
Yu,
Z., Zhou, Y., Yang, H., Ma, Y. & Hu, C. 2014. Survival, growth, food
availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under
a fish farm in southern China. Aquaculture 426-427: 238-248. https://doi.org/10.1016/j.aquaculture.2014.02.013
*Corresponding author; email: aanj001@brin.go.id
|