Sains Malaysiana 51(11)(2022):
3703-3714
http://doi.org/10.17576/jsm-2022-5111-15
Angiotensin-I-Converting Enzyme Inhibitory (ACE-I)
Peptide from Germinated Lamtoro Gung (Leucaena leucocephala ssp. glabrata (Rose) S. Zarate)
Flour
(Angiotensin-I-Converting Enzyme Inhibitory (ACE-I)
Peptida daripada Percambahan Tepung Lamtoro Gung (Leucaena leucocephala ssp. glabrata (Rose) S.
Zarate))
APRILIA FITRIANI1,2, RETNO INDRATI1, YUSTINUS MARSONO1& SUPRIYADI SUPRIYADI1,*
1Department
of Food Technology and Agricultural Products, Faculty of Agricultural
Technology, Universitas
Gadjah Mada, Flora Street 1, Depok, Sleman, Special District of Yogyakarta,
55281, Indonesia
2Food
Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan,
Jenderal Ahmad Yani Street,
Banguntapan, Bantul, Special District of Yogyakarta,
Indonesia
Received: 17 December 2021/Accepted: 18 July 2022
Abstract
Hypertension
is a significant public health problem worldwide, a leading risk factor for
cardiovascular disease and cause of premature death. Angiotensin-I-converting
enzyme (ACE) activity is one of the causes of hypertension. Lamtoro Gung has
potential as an Angiotensin-I-converting Enzyme Inhibitory (ACE-I) due to the
presence of peptide that able to inhibit its activity to prevent hypertension.
The germination process was carried out to hydrolyse storage proteins and
produce peptides that have a low molecular weight. This study investigated
ACE-I activity from Lamtoro Gung seed during germination and evaluated the blanching
effect on it. This experiment was conducted with a Completely Randomised Design
(CRD), and the factor is the differences in germination duration (0, 12, 24,
36, 48, 60, and 72 h). Proteolytic activity and the degree of
hydrolysis during germination were studied to know the correlation between
germination and ACE-I activity. The highest ACE-I activity sample was blanched
with three different durations (2, 4, and 6 s). The 48 h germinated Lamtoro Gung had
the highest ACE-I activity (70.62%). This result was supported by the
proteolytic activity (168.79 U/g protein dry matter) and degree of hydrolysis
(23.26%). Forty-eight hours of germination of Lamtoro Gung resulted in the
highest ACE-I activity. Blanching of germinated Lamtoro Gung for 2 s could hold the
ACE-I activity, but the longer duration decreased it.
Keywords:
ACE-I; blanching; germination; Lamtoro Gung
Abstrak
Hipertensi adalah masalah kesihatan awam utama di seluruh dunia, faktor risiko utama penyakit kardiovaskular dan punca kematian pramatang. Aktiviti Angiotensin-I-converting enzyme (ACE) adalah salah satu punca hipertensi. Lamtoro Gung berpotensi sebagai Angiotensin-I-converting Enzyme Inhibitory (ACE-I) kerana kehadiran peptida yang mampu menghambat
aktivitinya untuk mencegah hipertensi. Proses percambahan boleh dijalankan untuk menghidrolisis protein simpanan dan menghasilkan peptida ringkas. Penyelidikan ini mengkaji aktiviti ACE-I daripada biji Lamtoro Gung semasa percambahan dan menilai kesan kukus kepadanya. Uji kaji ini dijalankan dengan Reka Bentuk Rawak Sepenuhnya (CRD) dan faktor penelitian yang digunakan iaitu perbezaan dalam tempoh percambahan (0, 12, 24,
36, 48, 60 dan 72 jam). Aktiviti proteolitik dan tahap hidrolisis semasa percambahan dikaji untuk mengetahui perkaitan antara percambahan dan aktiviti ACE-I. Sampel aktiviti ACE-I tertinggi kemudian dikukus dengan tiga tempoh didih yang berbeza (2, 4 dan 6 s). Lamtoro Gung yang bercambah 48 jam mempunyai aktiviti ACE-I tertinggi (70.62%). Keputusan ini disokong oleh aktiviti proteolitik (168.79 U/g protein bahan kering) dan tahap hidrolisis (23.26%). Lamtoro Gung yang bercambah dan dikukus selama 2 s boleh menahan aktiviti ACE-I, tetapi tempoh yang lebih lama mengurangkannya.
Kata kunci:
ACE-I; Lamtoro Gung; pengukusan; percambahan
References
Aderibigbe, S.A., Adetunji, O.A.
& Odeniyi, M.A. 2011. Antimicrobial and pharmaceutical properties of the
seed oil of Leucaena leucocephala (Lam.) De Wit (Leguminosae). African
Journal of Biomedical Research 14 (January): 63-68.
Ahn,
C.B., Jeon, Y.J., Kim, Y.T. & Je, J.Y. 2012. Angiotensin-I-converting
enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by
alcalase hydrolysis. Process Biochemistry 47(12): 2240-2245.
https://doi.org/10.1016/j.procbio.2012.08.019
Ali, A.S.
& Elozeiri, A.A. 2017. Metabolic processes during seed germination. In Advances
in Seed Biology, Jimenez-Lopez, J.C. DOI:
10.5772/intechopen.70653
Aluko,
R.E. 2015. Structure and function of plant protein-derived antihypertensive
peptides. Current Opinion in Food Science 4(5): 44-50.
https://doi.org/10.1016/j.cofs.2015.05.002
Bamdad,
F., Dokhani, S., Keramat, J. & Zareie, R. 2009. The impact of germination
and in vitro digestion on the formation of angiotensin converting enzyme
(ACE) inhibitory peptides from lentil proteins compared to whey proteins. International
Journal of Biological and Life Science 5: 2.
Basha,
S.M.M. & Beevers, L. 1975. The development of proteolytic activity and
protein degradation during the germination of Pisum sativum L. Planta 124(1): 77-87. https://doi.org/10.1007/BF00390070
Bower,
J.A. 2013. Statistical Methods for Food Science: Introductory
Proecedures for the Food Practitioner. 2nd ed. John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781118541593
Bünning,
P. & Riordan, J.F. 1983. Activation of angiotensin converting enzyme by
monovalent anions. Biochemistry 22(1): 110-116.
https://doi.org/10.1021/bi00270a016
Charoenphun,
N., Cheirsilp, B., Sirinupong, N. & Youravong, W. 2013. Calcium-binding
peptides derived from tilapia (Oreochromis niloticus) protein
hydrolysate. European Food Research and Technology 236: 57-63.
https://doi.org/10.1007/s00217-012-1860-2
Cupp-Enyard,
C. 2008. Sigma’s non-specific protease activity assay - Casein as a substrate. Journal
of Visualized Experiments 19: 4-5. https://doi.org/10.3791/899
Cushman,
D.W. & Cheung, H.S. 1971. Spectrophotometric assay and properties of the
angiotensin-Converting enzyme of rabbit lung. Biochemical Pharmacology 20(7):
1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
de
Castro, R.J.S. & Sato, H.H. 2015. Biologically active peptides: Processes
for their generation, purification and identification and applications as
natural additives in the food and pharmaceutical industries. Food Research
International 74(5): 185-198. https://doi.org/10.1016/j.foodres.2015.05.013
Durak,
A., Baraniak, B., Jakubczyk, A. & Świeca, M. 2013. Biologically active
peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food
Chemistry 141(3): 2177-2183. https://doi.org/10.1016/j.foodchem.2013.05.012
Escudero,
E., Mora, L. & Toldrá, F. 2014. Stability of ACE inhibitory ham peptides
against heat treatment and in vitro digestion. Food Chemistry 161: 305-311. https://doi.org/10.1016/j.foodchem.2014.03.117
Fan, H.,
Liao, W. & Wu, J. 2018. Molecular interactions, bioavailability, and
cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. Journal
of Food Biochemistry 43(1): 1-8. https://doi.org/10.1111/jfbc.12572
Fellows,
P. 2000. Food Processing Technology. 2nd ed. Woodhead Publishing Limited
and CRC Press LLC.
Fitriani,
A., Santoso, U. & Supriyadi, S. 2021a. Conventional processing affects
nutritional and antinutritional components and in vitro protein
digestibility in Kabau (Archidendron bubalinum). International
Journal of Food Science 2021: Article ID. 3057805.
Fitriani,
A., Supriyadi, S., Rachma, Y.A., Maharani, P., Ardianto, C., Khoirunnissa, R.,
Muzakki, W.A. & Fajarini, L.D.R. 2021b. Proses pembuatan tepung kecambah
Lamtoro Gung (Leucaena leucocephala ssp. Glabrata (Rose) S. Zarate)
sebagai antihipertensi.
Gepstein,
S. & Ilan, I. 1980. Evidence for the involvement of cytokinins in the
regulation of proteolytic activity in cotyledons of germinating beans. Plant
and Cell Physiology 21(March): 57-63.
Gonçalves,
R.N., Duarte, S., Barbosa, G. & Silva-López, R.E. 2016. Proteases from Canavalia
ensiformis: Active and thermostable enzymes with potential of application
in biotechnology. Biotechnology Research International 2016: 3427098.
Gulewicz,
P., Martínez-Villaluenga, C., Frias, J., Ciesiołka, D., Gulewicz, K. &
Vidal-Valverde, C. 2008. Effect of germination on the protein fraction
composition of different lupin seeds. Food Chemistry 107(2): 830-844.
https://doi.org/10.1016/j.foodchem.2007.08.087
Harifah,
C.S. 2017. Perubahan zat gizi, senyawa antigizi, serta nilai cerna protein
secara in vitro serta profil asam amino biji Lamtoro Gung (Leucaena
Leucocephala) kukus dan rebus. Thesis. Universitas Gadjah Mada
(Unpublished).
Harifah,
C.S., Supriyadi, S. & Santoso, U. 2018. Antinutrient and in vitro protein digestibility Lamtoro Gung seed Leucaena leucocephala steamed
and boiled. In Seminar Nasional PATPI 2017. pp. 539-545.
Hartree,
E.F. 1972. Determination of potein: A modification of the lowry method that
gives a linear photometric response. Analytical Biochemistry 48:
422-427. https://doi.org/10.1007/BF01412567
Hwang,
J-S. 2010. Impact of processing on stability of angiotensin I-converting enzyme
(ACE) inhibitory peptides obtained from tuna cooking juice. Food Research
International 43(3): 902-906. https://doi.org/10.1016/j.foodres.2009.12.012
Kesari,
V. & Rangan, L. 2011. Coordinated changes in storage proteins during
development and germination of elite seeds of Pongamia pinnata,
aversatile biodiesel legume. AoB PLANTS 11(1): 1-16.
https://doi.org/10.1093/aobpla/plr026
Kırmızı,
S. & Güleryüz, G. 2006. Protein mobilization and proteolytic enzyme
activities during seed germination of broad bean (Vicia faba L.). Journal
of Biosciences 61(3-4): 222-226.
Kuo,
Y.H., Rozan, P., Lambein, F., Frias, J. & Vidal-Valverde, C. 2004. Effects
of different germination conditions on the contents of free protein and
non-protein amino acids of commercial legumes. Food Chemistry 86(4):
537-545. https://doi.org/10.1016/j.foodchem.2003.09.042
Lee,
J.K., Jeon, J-K. & Byun, H-G. 2011. Effect of angiotensin I converting
enzyme inhibitory peptide purified from skate skin hydrolysate. Food
Chemistry 125(2): 495-499. https://doi.org/10.1016/j.foodchem.2010.09.039
Li, G.H.,
Qu, M.R., Wan, J.Z. & You, J.M. 2007. Antihypertensive effect of rice
protein hydrolysate with in vitro angiotensin
i-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia
Pacific Journal of Clinical Nutrition 16(SUPPL.1): 275-280.
https://doi.org/10.6133/apjcn.2007.16.s1.52
Lichtenfeld,
C., Manteuffel, R., Müntz, K., Neumann, D., Scholz, G. & Weber, E. 1979.
Protein degradation and proteolytic activities in germinating field beans (Vicia
faba L., var. minor). Biochemie Und Physiologie Der Pflanzen 174(4):
255-274. https://doi.org/10.1016/s0015-3796(17)30587-5
Mamilla,
R.K. & Mishra, V.K. 2017. Effect of germination on antioxidant and ACE
inhibitory activities of legumes. LWT - Food Science and Technology 75(1): 51-58. https://doi.org/10.1016/j.lwt.2016.08.036
Mariod,
A.A., Edris, Y.A., Cheng, S.F. & Abdelwahab, S.I. 2012. Effect of
germination periods and conditions on chemical composition, fatty acids and
amino acids of two black cumin seeds. Acta Scientiarum Polonorum 11(4):
401-410.
Mayer,
A.M. & Poljakoff-Mayber, A. 1979. The structure of seeds and seedlings. In The
Germination of Seed. 3rd ed. New York: Pergamon Press. pp. 1-9.
https://doi.org/10.1016/B978-0-08-028853-6.50008-5
Miguel,
M. & Aleixandre, A. 2006. Antihypertensive peptides derived from egg
proteins. Recent Advances in Nutritional Sciences 136(6): 1457-1460.
Natesh,
R., Schwager, S.L.U., Sturrock, E.D. & Acharya, K.R. 2003. Crystal
structure of the human angiotensin-converting enzyme – lisinopril complex. Nature
Publishing Group 421(1): 551-554.
Noviyanti,
E., Supriyadi, A., Arum, L.S., Akbar, R.R. & Siswoyo, T.A. 2020. Effect of
germination on free radical scavenging activities and angiotensin i-converting
enzyme inhibitory of melinjo (Gnetum gnemon L.) seed proteins. Journal
of Microbiology, Biotechnology and Food Sciences 9(4): 809-812.
https://doi.org/10.15414/JMBFS.2020.9.4.809-812
Nursiwi,
A., Dwikiputra, B.I., Ishartani, D. & Sari, A.M. 2019. Changes on microbial
growth during mlanding tempeh (Leucaena leucocephala) over fermentation. IOP Conference Series: Earth and Environmental Science 379(1): 1-6.
https://doi.org/10.1088/1755-1315/379/1/012001
Nursiwi,
A., Ishartani, D., Sari, A.M. & Nisyah, K. 2018. Study on Leucaena
leocochepala seed during fermentation: Sensory characteristic and changes
on anti nutritional compounds and mimosine level. IOP Conference Series:
Earth and Environmental Science 102: 012093.
Obiazi,
C.C. 2015. Hot water enhanced germination of Leucaena leucocephala seeds
in light and dark conditions. Current Research in Agricultural Sciences 2(2): 67-72. https://doi.org/10.18488/journal.68/2015.2.2/68.2.67.72
Pebrianti,
S.A., Nur Cahyanto, M. & Indrati, R. 2019. Angiotensin I-converting enzyme
(ACE) inhibitory activity of ACE inhibitory peptides produced during the
fermentation of pigeon pea (Cajanus cajan) tempe. Journal of
Indonesian Food and Nutrition Progress 16(2): 47-52.
https://doi.org/10.22146/ifnp.46921
Pertiwi,
M.G.P., Marsono, Y. & Indrati, R. 2019. In
vitro gastrointestinal simulation of tempe prepared from Koro Kratok (Phaseolus
lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of
Food Science and Technology 57(5): 1847-1855.
https://doi.org/10.1007/s13197-019-04219-1
Puspitojati,
E., Nur Cahyanto, M., Marsono, Y. & Indrati, R. 2019. Production of
angiotensin-i-converting enzyme (ACE) inhibitory peptides during the
fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan
Journal of Nutrition 18(5): 464-470. https://doi.org/10.3923/pjn.2019.464-470
Ramakrishna,
V. & Rao, P.R. 2005. Purification of acidic protease from the cotyledons of
germinating indian bean (Dolichos lablab L. var. lignosus) seeds. African
Journal of Biotechnology 4(July): 703-707.
Ratnayani,
K., Suter, I.K., Antara, N.S. & Putra, I.N.K. 2019. Angiotensin converting
enzyme (ACE) inhibitory activity of peptide fraction of germinated pigeon pea (Cajanus
cajan (L.) Millsp.). Indonesian Journal of Chemistry 19(4): 900-906.
https://doi.org/10.22146/ijc.37513
Sayudi,
S., Herawati, N. & Ali, A. 2015. Potensi biji Lamtoro Gung dan biji Kedelai
sebagai bahan baku pembuatan tempe komplementasi. Journal Online Mahasiswa
Universitas Riau 2(1): 1-9.
Shutov,
A.D. & Vaintraub, I.A. 1987. Degradation of storage proteins in germinating
seeds. Phytochemistry 26(6): 1557-1566.
Supriyadi,
S., Indrati, R. & Santoso, U. 2021. Peptida bioaktif dari indigenous
Indonesian stinky bean sebagai sumber ACE-Inhibitor untuk menekan penyakit
hipertensi.
Tavares,
T., Del Mar Contreras, M., Amorim, M., Pintado, M., Recio, I. & Xavier
Malcata, F. 2011. Novel whey-derived peptides with inhibitory effect against
angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides 32(5):
1013-1019. https://doi.org/10.1016/j.peptides.2011.02.005
Urbano,
G., Aranda, P., Vílchez, A., Aranda, C., Cabrera, L., Porres, J.M. &
López-Jurado. M. 2005. Effects of germination on the composition and nutritive
value of proteins in Pisum sativum, L. Food Chemistry 93(4):
671-679. https://doi.org/10.1016/j.foodchem.2004.10.045
Wu, W.,
Yu, P.P., Zhang, F.Y., Che, H.X. & Jiang, Z.M. 2014. Stability and
cytotoxicity of angiotensin-i-converting enzyme inhibitory peptides derived
from bovine casein. Journal of Zhejiang University: Science B 15(2): 143-152.
https://doi.org/10.1631/jzus.B1300239
Xiao,
H.W., Pan, Z., Deng, L.Z., El-Mashad, H.M., Yang, X.H., Mujumdar, A.S., Gao,
Z.J. & Zhang, Q. 2017. Recent Developments and trends in thermal blanching
– A comprehensive review. Information Processing in Agriculture 4(2):
101-127. https://doi.org/10.1016/j.inpa.2017.02.001
Zhang,
Y., Pechan, T. & Chang, S.K.C. 2018. Antioxidant and angiotensin-I
converting enzyme inhibitory activities of phenolic extracts and fractions
derived from three phenolic-rich legume varieties. Journal of Functional
Foods 42: 289-297. https://doi.org/10.1016/j.jff.2017.12.060
*Corresponding author; email: suprif248@ugm.ac.id
|