Sains Malaysiana
51(11)(2022): 3741-3754
http://doi.org/10.17576/jsm-2022-5111-18
Changes of Grip Strength,
Articular Cartilage and Subchondral Bone in Monoiodoacetate-Induced
Osteoarthritis in Rats
(Perubahan pada Kekuatan Genggaman, Rawan Artikul
dan Tulang Subkondral dalam Osteoartritis Aruhan Monoiodoasetat pada Tikus)
SOPHIA OGECHI EKEUKU1, FAIRUS
AHMAD2 & KOK-YONG CHIN1,*
1Department of Pharmacology, Faculty of
Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Anatomy, Faculty of Medicine,
Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000
Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received:
24 August 2021/Accepted: 27 June 2022
Abstract
Osteoarthritis is a degenerative disease affecting articular cartilage among the elderly. The
intra-articular monoiodoacetate injection is one of the most widely used
methods to induce osteoarthritis in animals. While the effects of
monoiodoacetate on cartilage are well-characterized, its effects on subchondral
bone remodeling are less studied. The purpose of this study was to determine
the changes of the grip strength, articular cartilage structure and subchondral
bone remodeling in monoiodoacetate-induced osteoarthritis in rats. Three-month-old male Wistar rats were
assigned to normal control (n=6) and osteoarthritis group (n=6), which received intra-articular
injection of 4 mg/50 µL monoiodoacetate solution once at the left knee of
hindlimb. The rats were monitored for four weeks. The grip strength test was
performed before injection and every week after injection. After four weeks,
the femurs with intact cartilage were harvested for histomorphological analysis. Grip
strength was reduced significantly in the osteoarthritic rats
compared to the normal rats (p<0.05). Food intake was reduced significantly
one week following monoiodoacetate-induction (p<0.05), but it stabilized
afterwards. Monoiodoacetate injection increased cartilage erosion and osteoclast number in the
subchondral bone of the osteoarthritic rats compared to the normal rats
(p<0.05). However, it did not affect body weight, subchondral
bone osteoblast activity, mineralization and microstructure of osteoarthritic
rats (p>0.05). As a conclusion, monoiodoacetate-induced osteoarthritis affects
the cartilage and increases osteoclast formation in the subchondral bone of
rats.
Keywords: Femur; monoiodoacetate; osteoarthritis; subchondral bone
Abstrak
Osteoartritis
ialah penyakit degeneratif yang merosakkan rawan artikul dalam kalangan warga
tua. Suntikan intra-artikul monoiodoasetat merupakan salah satu kaedah yang
paling biasa digunakan untuk mengaruh osteoartritis pada haiwan. Walaupun kesan
monoiodoasetat ke atas rawan telah diperincikan, kesannya terhadap
penukargantian tulang subkondral kurang dikaji. Tujuan kajian ini adalah untuk
menentukan perubahan kekuatan genggaman, struktur rawan artikul dan
penukargantian tulang subkondral dalam osteoartritis aruhan monoiodoasetat pada
tikus. Tikus Wistar berumur tiga bulan telah dibahagi kepada kumpulan kawalan
normal (n=6) dan osteoartritis (n=6) yang menerima suntikan intra-artikul
larutan monoiodoasetat pada 4 mg/50 µL sekali pada sendi kiri kaki belakang.
Tikus tersebut telah diperhatikan selama empat minggu. Ujian kekuatan genggaman
telah dilakukan sebelum suntikan dan setiap minggu selepas suntikan. Selepas
empat minggu, femur dengan rawan yang tidak diaruh telah diambil untuk analisis
histomorfometri. Kekuatan genggaman telah menurun secara signifikan pada tikus
yang mempunyai osteoartritis berbanding dengan tikus normal (p<0.05).
Pengambilan makanan telah berkurang secara signifikan satu minggu selepas
aruhan monoiodoasetat (p<0.05), tetapi ia menjadi stabil selepas itu.
Suntikan monoiodoasetat telah meningkatkan hakisan rawan dan bilangan osteoklas
dalam tulang subkondral pada tikus yang mempunyai osteoartritis berbanding
dengan tikus normal (p<0.05). Walau bagaimanapun, ia tidak mengganggu berat
badan, aktiviti osteoblas, mineralisasi dan mikrostruktur pada tulang subkondral
tikus osteoartritis (p>0.05). Secara kesimpulannya, osteoartritis aruhan
monoiodoasetat memberi kesan terhadap rawan dan meningkatkan pembentukan
osteoklas dalam tulang subkondral tikus.
Kata kunci: Femur; monoiodoasetat; osteoartritis; tulang
subkondral
References
Al-Saadi,
H.M., Chin, K.Y., Ahmad, F., Mohd Ramli, E.S., Arlamsyah, A.M., Japar Sidik,
F.Z., Abdul Hamid, J. & Soelaiman, I.N. 2021. Effects of palm
tocotrienol-rich fraction alone or in combination with glucosamine sulphate on
grip strength, cartilage structure and joint remodelling markers in a rat model
of osteoarthritis. Applied Sciences 11: 18. https://doi.org/10.3390/app11188577
Asjid,
R., Faisal, T., Qamar, K., Malik, S., Umbreen, F. & Fatima, M. 2019. Effect
of platelet-rich plasma on mankin scoring in chemically-induced animal model of
osteoarthritis. Journal of the College of Physicians and Surgeons Pakistan 29(11): 1067-1071. https://doi.org/10.29271/jcpsp.2019.11.1067
Ayhan,
E., Kesmezacar, H. & Akgun, I. 2014. Intraarticular injections
(corticosteroid, hyaluronic acid, platelet rich plasma) for the knee
osteoarthritis. World Journal of Orthopedics 5(3): 351-361.
https://doi.org/10.5312/wjo.v5.i3.351
Bagi,
C.M., Berryman, E., Zakur, D.E., Wilkie, D. & Andresen, C.J. 2015. Effect
of antiresorptive and anabolic bone therapy on development of osteoarthritis in
a posttraumatic rat model of OA. Arthritis Research & Therapy 17(1):
315. https://doi.org/10.1186/s13075-015-0829-5
Burr,
D.B. & Gallant, M.A. 2012. Bone remodelling in osteoarthritis. Nature
Reviews Rheumatology 8(11): 665-673.
https://doi.org/10.1038/nrrheum.2012.130
Chin,
K.Y., Wong, S.K., Sidik, F.Z.J., Hamid, J.A., Abas, N.H., Ramli, E.S.M.,
Mokhtar, S.A., Rajalingham, S. & Nirwana, S.I. 2019. The effects of annatto
tocotrienol supplementation on cartilage and subchondral bone in an animal
model of osteoarthritis induced by monosodium iodoacetate. International
Journal of Environmental Research and Public Health 16(16): 2897.
https://doi.org/10.3390/ijerph16162897
Cobos,
E. & Portillo-Salido, E. 2013. “Bedside-to-Bench” behavioral outcomes in
animal models of pain: Beyond the evaluation of reflexes. Current
Neuropharmacology 11(6): 560-591.
https://doi.org/10.2174/1570159x113119990041
Deacon,
R.M.J. 2013. Measuring the strength of mice. Journal of Visualized
Experiments 76: 2610. https://doi.org/10.3791/2610
Dulay,
G.S., Cooper, C. & Dennison, E.M. 2015. Knee pain, knee injury, knee
osteoarthritis & work. Best Practice and Research: Clinical Rheumatology 29(3): 454-461. https://doi.org/10.1016/j.berh.2015.05.005
Gallo,
J., Raska, M., Kriegova, E. & Goodman, S.B. 2017. Inflammation and its
resolution and the musculoskeletal system. Journal of Orthopaedic
Translation 10: 52-67. https://doi.org/10.1016/j.jot.2017.05.007
Guzman,
R.E., Evans, M.G., Bove, S., Morenko, B. & Kilgore, K. 2003.
Mono-Iodoacetate-induced histologic changes in subchondral bone and articular
cartilage of rat femorotibial joints: AN animal model of osteoarthritis. Toxicologic
Pathology 31(6): 619-624. https://doi.org/10.1080/01926230390241800
Henrotin,
Y., Pesesse, L. & Sanchez, C. 2012. Subchondral bone and osteoarthritis:
Biological and cellular aspects. Osteoporosis International 23(8 SUPPL):
S847-51. https://doi.org/10.1007/s00198-012-2162-z
Henson,
F.M.D. & Vincent, T.A. 2008. Alterations in the vimentin cytoskeleton in
response to single impact load in an in vitro model of cartilage damage
in the rat. BMC Musculoskeletal Disorders 9(1): 94.
https://doi.org/10.1186/1471-2474-9-94
Hügle,
T. & Geurts, J. 2016. What drives osteoarthritis? - synovial versus
subchondral bone pathology. Rheumatology (Oxford) 56(9): 1461-1471.
https://doi.org/10.1093/rheumatology/kew389
Hunter,
D.J. 2011. Pharmacologic therapy for osteoarthritis-the era of disease
modification. Nature Reviews Rheumatology 7(1): 13-22.
https://doi.org/10.1038/nrrheum.2010.178
Ji,
B., Zhang, Z., Guo, W., Ma, H., Xu, B., Mu, W., Amat, A. & Cao, L. 2018.
Isoliquiritigenin blunts osteoarthritis by inhibition of bone resorption and
angiogenesis in subchondral bone. Scientific Reports 8(1): 1721.
https://doi.org/10.1038/s41598-018-19162-y
Kulak,
C.A.M. & Dempster, D.W. 2010. Bone histomorphometry: A concise review for
endocrinologists and clinicians. Arquivos Brasileiros de Endocrinologia
& Metabologia 54(2): 87-98.
https://doi.org/10.1590/S0004-27302010000200002
Lampropoulou-Adamidou,
K., Lelovas, P., Karadimas, E.V., Liakou, C., Triantafillopoulos, I.K., Dontas,
I. & Papaioannou, N.A. 2014. Useful animal models for the research of
osteoarthritis. European Journal of Orthopaedic Surgery and Traumatology 24(3): 263-271. https://doi.org/10.1007/s00590-013-1205-2
Li,
G., Yin, J., Gao, J., Cheng, T.S., Pavlos, N.J., Zhang, C. & Zheng, M.H.
2013. Subchondral bone in osteoarthritis: Insight into risk factors and
microstructural changes. Arthritis Research and Therapy 15(6): 223.
https://doi.org/10.1186/ar4405
Litwic,
A., Edwards, M.H., Dennison, E.M. & Cooper, C. 2013. Epidemiology and
burden of osteoarthritis. British Medical Bulletin 105: 185-199.
https://doi.org/10.1093/bmb/lds038
McErlain,
D.D., Ulici, V., Darling, M., Gati, J.S., Pitelka, V., Beier, F. &
Holdsworth, D.W. 2012. An in vivo investigation of the initiation and
progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Research and Therapy 14(1): R26-R26.
https://doi.org/10.1186/ar3727
Murat,
N., Karadam, B., Ozkal, S., Karatosun, V. & Gidener, S. 2007.
Quantification of papain-induced rat osteoarthritis in relation to time with
the Mankin score. Acta Orthopaedica Et Traumatologica Turcica 41(3): 233-237.
Namhong,
S., Wongdee, K., Suntornsaratoon, P., Teerapornpuntakit, J., Hemstapat, R.
& Charoenphandhu, N. 2020. Knee osteoarthritis in young growing rats is
associated with widespread osteopenia and impaired bone mineralization. Scientific
Reports 10(1): 15079. https://doi.org/10.1038/s41598-020-71941-8
Network,
G.B. of D. C. 2020. Global Burden of Disease Study 2019 (GBD 2019) results.
Osteoarthritis —level 3 cause. http://www.healthdata.org/results/gbd_summaries/2019/osteoarthritis-level-3-cause.
Otis,
C., Guillot, M., Moreau, M., Martel-Pelletier, J., Pelletier, J.P., Beaudry, F.
& Troncy, E. 2017. Spinal neuropeptide modulation, functional assessment
and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis. Neuropeptides 65: 56-62. https://doi.org/10.1016/j.npep.2017.04.009
Pitcher,
T., Sousa-Valente, J. & Malcangio, M. 2016. The monoiodoacetate model of
osteoarthritis pain in the mouse. Journal of Visualized Experiments 2016(111): 53746. https://doi.org/10.3791/53746
Robinson,
W.H., Lepus, C.M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T.M. &
Sokolove, J. 2016. Low-grade inflammation as a key mediator of the pathogenesis
of osteoarthritis. Nature Reviews Rheumatology 12(10): 580-592.
https://doi.org/10.1038/nrrheum.2016.136
Salo,
P.T., Hogervorst, T., Seerattan, R.A., Rucker, D. & Bray, R.C. 2002.
Selective joint denervation promotes knee osteoarthritis in the aging rat. Journal
of Orthopaedic Research 20(6): 1256-1264.
https://doi.org/10.1016/S0736-0266(02)00045-1
Samvelyan,
H.J., Hughes, D., Stevens, C. & Staines, K.A. 2021. Models of
osteoarthritis: Relevance and new insights. Calcified Tissue International 109(3): 243-256. https://doi.org/10.1007/s00223-020-00670-x
Sharma,
V., Anuvat, K., John, L. & Davis, M. 2017. Scientific American pain
management-arthritis of the knee. Decker: Pain Related Disease States.
Sinusas,
K. 2012. Osteoarthritis: Diagnosis and treatment. American Family Physician 85(1): 49-56.
Steinmeyer,
J., Bock, F., Stöve, J., Jerosch, J. & Flechtenmacher, J. 2018.
Pharmacological treatment of knee osteoarthritis: Special considerations of the
new German guideline. Orthopedic Reviews 10(4): 7782.
https://doi.org/10.4081/or.2018.7782
Sur,
D. & Chakravorty, R. 2016. Relationship of thyroid and sex hormones with
osteoarthritis in postmenopausal Indian women. Journal of Clinical
Gynecology and Obstetrics 5(4): 117-120. https://doi.org/10.14740/jcgo410e
Suri,
S. & Walsh, D.A. 2012. Osteochondral alterations in osteoarthritis. Bone 51(2): 204-211. https://doi.org/10.1016/j.bone.2011.10.010
Yang,
Y., Li, P., Zhu, S. & Bi, R. 2020. Comparison of early-stage changes of
osteoarthritis in cartilage and subchondral bone between two different rat
models. PeerJ 2020(4): e8934-e8934. https://doi.org/10.7717/peerj.8934
Zhang,
L., Hu, H., Tian, F., Song, H. & Zhang, Y. 2011. Enhancement of subchondral
bone quality by alendronate administration for the reduction of cartilage
degeneration in the early phase of experimental osteoarthritis. Clinical and
Experimental Medicine 11(4): 235-243.
https://doi.org/10.1007/s10238-011-0131-z
*Corresponding author;
email: chinkokyong@ppukm.ukm.edu.my
|