Sains Malaysiana 51(11)(2022): 3765-3774
http://doi.org/10.17576/jsm-2022-5111-20
Effects of Electron Beam Irradiation on the Thermal Properties of Scrap
Polytetrafluoroethylene
(Kesan Sinaran Elektron ke atas Sifat Terma Pepejal Politetrafluoroetilena)
SIVANESAN APPADU1,*, CHANTARA THEVY RATNAM1, SAHRIM
AHMAD2, RUEY SHAN CHEN2, TEO MING TING1 &
THUMMALAPALLI C.S.M. GUPTA3
1Radiation Processing Technology Division,
Malaysian Nuclear Agency, 43000 Bangi, Selangor Darul Ehsan, Malaysia
2School of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Research and Development, Apar Industries
Limited, Chembur 400071, Mumbai, India
Received: 10 February
2022/Accepted: 15 July 2022
Abstract
This study is focused on analyzing the effects of
electron beam (EB) irradiation at high doses and normal atmospheric conditions
on the thermal stability of scrap polytetrafluoroethylene (PTFE) solid to
facilitate the recycling process of the material by grinding it into
micro-powder additives for various applications. In this work, PTFE scrap with thickness not exceeding 1 mm was
irradiated in doses between 0 - 1500 kGy using an
electron beam accelerator machine (EBM) with a voltage energy of 3 MeV and
current of 10 mA and grinded into powder by using a laboratory mill. The
changes in morphology of the grinded powder, crystallinity and thermal
properties of PTFE with increasing irradiation dose was studied by using
scanning electron microscopy (SEM), X-ray
diffraction (XRD) analysis, thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC). The photomicrographs obtained from SEM showed that
the particle size of the grinded micro-powder decreases with increasing
irradiation dose with best results observed at 1500 kGy dose. DSC analysis showed that the crystallization temperature (Tc)
and melting temperature (Tm) decreases
with increasing irradiation doses as
a result of lower molecular weight. XRD analysis of the irradiated PTFE indicated that
the intensity of the peak had increased with increasing doses of irradiation
due to the increase in crystallinity of the material. The distinctly shorter derivative thermogravimetric (DTG) peak height at 1500 kGy shows
higher rate of mass loss at that dose due to the rapid loss of mechanical
properties caused by
degradation.
Keywords: Degradation; electron beam; irradiation;
micro-powder; polytetrafluoroethylene
Abstrak
Kajian ini ditumpukan kepada analisis kesan sinaran elektron (EB) pada dos sinaran yang tinggi dan dalam keadaan atmosfera biasa terhadap kestabilan terma sisa bahan pepejal politetrafluoroetilena (PTFE) untuk memudahkan proses pengitaran semula dengan mengisarkannya kepada bahan tambahan dalam bentuk serbuk bersaiz mikron untuk digunakan dalam pelbagai jenis aplikasi. Sisa bahan PTFE dalam bentuk kepingan dengan ketebalan tidak melebihi 1 mm disinarkan pada dos antara 0 -
1500 kGy dengan menggunakan mesin pemecut alur elektron (EBM) dengan tenaga voltan sebanyak 3 MeV dan arus alur elektrik 10 mA dan dikisarkan menjadi serbuk dengan menggunakan mesin pengisar makmal. Perubahan morfologi serbuk yang dikisarkan, sifat kehabluran dan sifat terma bahan PTFE dengan peningkatan dalam dos sinaran dikaji dengan menggunakan mikroskop elektron pengimbasan (SEM), analisis pembelauan sinar-X (XRD), analisis termogravimetri (TGA)
dan kalorimetri pengimbasan pembezaan (DSC). Fotomikrograf yang diperoleh daripada analisis SEM menunjukkan bahawa saiz partikel serbuk mikro yang dikisar menjadi lebih kecil dengan peningkatan dalam dos penyinaran sehingga 1500 kGy. Analisis DSC menunjukkan bahawa suhu penghabluran (Tc)
dan suhu lebur (Tm) berkurangan dengan peningkatan dalam dos penyinaran disebabkan nilai berat molekul yang menjadi lebih rendah. Analisis XRD bagi bahan PTFE yang disinarkan menunjukkan bahawa keamatan puncak meningkat dengan peningkatan dalam dos penyinaran disebabkan oleh peningkatan dalam sifat kehabluran bahan tersebut. Keamatan puncak termogravimetrik terbitan (DTG)
yang jauh lebih rendah pada 1500 kGy juga menunjukkan kadar kehilangan jisim yang lebih tinggi disebabkan oleh degradasi serta kehilangan sifat mekanikal yang ketara pada dos berkenaan.
Kata kunci:
Alur elektron; degradasi; penyinaran; politetrafluoroetilena; serbuk bersaiz mikro
REFERENCES
Barylski, A., Aniołek, K., Swinarew, A.S.,
Kaptacz, S., Gabor, J., Waśkiewicz, Z. & Stanula, A. 2020a. Novel
organic material induced by electron beam irradiation for medical application. Polymers 12(2): 1-11.
Barylski, A., Swinarew, A.S., Aniołek, K., Kaptacz, S.,
Gabor, J., Stanula, A. & Wa, Z. 2020b. Tribological and mechanical behavior
of graphite composites of polytetrafluoroethylene (PTFE) irradiated by the
electron beam. Polymers 12(8): 1676.
Brown, E.N., Rae, P.J., Dattelbaum, D.M., Clausen, B. &
Brown, D.W. 2008. In-situ measurement of crystalline lattice strains in
polytetrafluoroethylene. Experimental Mechanics 48(1): 119-131.
Chai, L., Jiang, H., Zhang, B., Qiao, L., Wang, P., Weng, L.
& Liu, W. 2019. Influence of the gamma irradiation dose on tribological
property of polytetrafluoroethylene. Tribology International 2019:
106094. https://doi.org/10.1016/j.triboint.2019.106094
Dhanumalayan, E. & Joshi, G.M. 2018. Performance
properties and applications of polytetrafluoroethylene ( PTFE ) - A review. Advanced
Composites and Hybrid Materials 1: 247-268.
Dubey, K.A., Majji, S., Sinha, S.K., Bhardwaj, Y.K., Acharya,
S., Chaudhari, C.V & Varshney, L. 2013. Synergetic effects of radiolytically
degraded PTFE microparticles and organoclay in PTFE-reinforced ethylene vinyl
acetate composites. Materials Chemistry and Physics 143(1): 149-154.
http://dx.doi.org/10.1016/j.matchemphys.2013.08.039
Ebnesajjad, S. 2013. Introduction to Fluoropolymers:
Materials, Technology and Applications. Norwich: William Andrew.
Ebnesajjad, S. & Morgan, R. 2012. Manufacturing and
properties of low-molecular-weight fluoropolymer additives. In Fluoropolymer
Additives. Norwich: William Andrew. pp. 37-52
Forsythe, J.S. & Hill, D.J.T. 2000. Radiation chemistry
of fluoropolymers. Progress in Polymer Science (Oxford) 25(1): 101-136.
Frick, A., Sich, D., Heinrich, G., Lehmann, D., Gohs, U.
& Stern, C. 2013. Properties of melt processable PTFE/PEEK blends: The effect
of reactive compatibilization using electron beam irradiated melt processable
PTFE. Journal of Applied Polymer Science 128(3): 1815-1827.
Goel, N.K., Kumar, V., Pahan, S., Bhardwaj, Y.K. &
Sabharwal, S. 2011. Development of adsorbent from Teflon waste by radiation
induced grafting: Equilibrium and kinetic adsorption of dyes. Journal of
Hazardous Materials 193:
17-26. http://dx.doi.org/10.1016/j.jhazmat.2011.05.026
Khan, M.S., Lehmann, D. & Heinrich, G. 2008. Modification
of PTFE nanopowder by controlled electron beam irradiation: A useful approach
for the development of PTFE coupled EPDM compounds. Express Polymer Letters 2(4): 284-293.
Khan, M.S., Lehmann, D., Heinrich, G., Gohs, U. & Franke,
R. 2009. Structure-property effects on mechanical, friction and wear properties
of electron modified PTFE filled EPDM composite. Express Polymer Letters 3(1): 39-48.
Khatipov, S.A., Serov, S.A. & Buznik, V.M. 2020. Radiation
Modification of Polytetrafluoroethylene. Opportunities for
Fluoropolymers. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-821966-9/00006-7
Lappan, U., Geißler, U. & Scheler, U. 2007. The influence
of the irradiation temperature on the ratio of chain scission to branching
reactions in electron beam irradiated polytetrafluoroethylene (PTFE). Macromolecular
Materials and Engineering 292(5):
641-645.
Lappan, U., Geißler, U. & Lunkwitz, K. 2000. Changes in
the chemical structure of polytetrafluoroethylene induced by electron beam
irradiation in the molten state. Radiation Physics and Chemistry 59(3): 317-322.
Lappan, U., Geißler, U. & Lunkwitz, K. 1999. Modification
of polytetrafluoroethylene by electron beam irradiation in various atmospheres. Nuclear Instruments and Methods in Physics Research, Section B: Beam
Interactions with Materials and Atoms 151(1-4): 222-226.
Lappan, U., Geißler, U., Häußler, L., Pompe, G. &
Scheler, U. 2004. The estimation of the molecular weight of
polytetrafluoroethylene based on the heat of crystallisation. A comment on
Suwa’s equation. Macromolecular Materials and Engineering 289(5): 420-425.
Lappan, U., Fuchs, B., Geißler, U., Scheler, U. &
Lunkwitz, K. 2002. Number-average molecular weight of radiation-degraded
poly(tetrafluoroethylene). An end group analysis based on solid-state NMR and
IR spectroscopy. Polymer 43(16):
4325-4330.
Liu, S., Fu, C., Gu, A. & Yu, Z. 2015. Structural changes
of polytetrafluoroethylene during irradiation in oxygen. Radiation Physics
and Chemistry 109: 1-5.
http://dx.doi.org/10.1016/j.radphyschem.2014.12.005
Lunkwitz, K., Lappan, U. & Scheler, U. 2004. Modification
of perfluorinated polymers by high-energy irradiation. Journal of Fluorine
Chemistry 125(6): 863-873.
Mohammadian-Kohol, M., Asgari, M. & Shakur, H.R. 2018.
Effect of gamma irradiation on the structural, mechanical and optical
properties of polytetrafl uoroethylene sheet. Radiation Physics and
Chemistry 145: 11-18.
Oshima, A., Tabata, Y., Kudoh, H. & Seguchi, T. 1995.
Radiation induced crosslinking of polytetrafluoroethylene. Radiation Physics
and Chemistry 45(2):
269-273.
Su, J., Wu, G., Liu, Y. & Zeng, H. 2006. Study on
polytetrafluoroethylene aqueous dispersion irradiated by gamma ray. Journal
of Fluorine Chemistry 127(1):
91-96.
Suwa, T., Takehisa, M. & Machi, S. 1973. Melting and
crystallization behavior of poly(tetrafluoroethylene). New method for molecular
weight measurement of poly(tetrafluoroethylene) using a differential scanning
calorimeter. Journal of Applied Polymer Science 17(11): 3253-3257.
Tabata, Y., Suzuki, H. & Ikeda, S. 2013. Radiation
modification of PTFE and its application. Radiation Physics and Chemistry 84: 14-19.
http://dx.doi.org/10.1016/j.radphyschem.2012.06.054
Tabata, Y., Ikeda, S. & Oshima, A. 2001.
Radiation-induced crosslinking and grafting of polytetrafluoroethylene. Nuclear
Instruments and Methods in Physics Research, Section B: Beam Interactions with
Materials and Atoms 185(1-4):
169-174.
Vijay, A.R.M., Ratnam, C.T., Khalid, M., Appadu, S. &
Gupta, T.C.S.M. 2020. Effect of
radiation on the mechanical, morphological and thermal properties of HDPE/rPTFE
blends. Radiation Physics and Chemistry 177(April): 109190.
https://doi.org/10.1016/j.radphyschem.2020.109190
Voronova, N.A., Kupchishin, A.I., Niyazov, M.N., Lisitsyn,
V.M., Tlebaev, K.B. & Gerasimenko, N.N. 2020. Deformation of
polytetrafluorethylene at various static strain and electron irradiation. Nuclear
Instruments and Methods in Physics Research, B: Beam Interations with Materials
and Atoms 465: 59-61.
https://doi.org/10.1016/j.nimb.2019.12.025
*Corresponding author; email: siddhar131@gmail.com
|