Sains Malaysiana 51(11)(2022): 3765-3774

http://doi.org/10.17576/jsm-2022-5111-20

 

Effects of Electron Beam Irradiation on the Thermal Properties of Scrap Polytetrafluoroethylene

(Kesan Sinaran Elektron ke atas Sifat Terma Pepejal Politetrafluoroetilena)

 

SIVANESAN APPADU1,*, CHANTARA THEVY RATNAM1, SAHRIM AHMAD2, RUEY SHAN CHEN2, TEO MING TING1 & THUMMALAPALLI C.S.M. GUPTA3

 

1Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Bangi, Selangor Darul Ehsan, Malaysia

2School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Research and Development, Apar Industries Limited, Chembur 400071, Mumbai, India

 

Received: 10 February 2022/Accepted: 15 July 2022

 

Abstract

This study is focused on analyzing the effects of electron beam (EB) irradiation at high doses and normal atmospheric conditions on the thermal stability of scrap polytetrafluoroethylene (PTFE) solid to facilitate the recycling process of the material by grinding it into micro-powder additives for various applications. In this work, PTFE scrap with thickness not exceeding 1 mm was irradiated in doses between 0 - 1500 kGy using an electron beam accelerator machine (EBM) with a voltage energy of 3 MeV and current of 10 mA and grinded into powder by using a laboratory mill. The changes in morphology of the grinded powder, crystallinity and thermal properties of PTFE with increasing irradiation dose was studied by using scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photomicrographs obtained from SEM showed that the particle size of the grinded micro-powder decreases with increasing irradiation dose with best results observed at 1500 kGy dose. DSC analysis showed that the crystallization temperature (Tc) and melting temperature (Tm) decreases with increasing irradiation doses as a result of lower molecular weight.  XRD analysis of the irradiated PTFE indicated that the intensity of the peak had increased with increasing doses of irradiation due to the increase in crystallinity of the material. The distinctly shorter derivative thermogravimetric (DTG) peak height at 1500 kGy shows higher rate of mass loss at that dose due to the rapid loss of mechanical properties caused by degradation.

 

Keywords: Degradation; electron beam; irradiation; micro-powder; polytetrafluoroethylene

 

Abstrak

Kajian ini ditumpukan kepada analisis kesan sinaran elektron (EB) pada dos sinaran yang tinggi dan dalam keadaan atmosfera biasa terhadap kestabilan terma sisa bahan pepejal politetrafluoroetilena (PTFE) untuk memudahkan proses pengitaran semula dengan mengisarkannya kepada bahan tambahan dalam bentuk serbuk bersaiz mikron untuk digunakan dalam pelbagai jenis aplikasi. Sisa bahan PTFE dalam bentuk kepingan dengan ketebalan tidak melebihi 1 mm disinarkan pada dos antara 0 - 1500 kGy dengan menggunakan mesin pemecut alur elektron (EBM) dengan tenaga voltan sebanyak 3 MeV dan arus alur elektrik 10 mA dan dikisarkan menjadi serbuk dengan menggunakan mesin pengisar makmal. Perubahan morfologi serbuk yang dikisarkan, sifat kehabluran dan sifat terma bahan PTFE dengan peningkatan dalam dos sinaran dikaji dengan menggunakan mikroskop elektron pengimbasan (SEM), analisis pembelauan sinar-X (XRD), analisis termogravimetri (TGA) dan kalorimetri pengimbasan pembezaan (DSC). Fotomikrograf yang diperoleh daripada analisis SEM menunjukkan bahawa saiz partikel serbuk mikro yang dikisar menjadi lebih kecil dengan peningkatan dalam dos penyinaran sehingga 1500 kGy. Analisis DSC menunjukkan bahawa suhu penghabluran (Tc) dan suhu lebur (Tm) berkurangan dengan peningkatan dalam dos penyinaran disebabkan nilai berat molekul yang menjadi lebih rendah. Analisis XRD bagi bahan PTFE yang disinarkan menunjukkan bahawa keamatan puncak meningkat dengan peningkatan dalam dos penyinaran disebabkan oleh peningkatan dalam sifat kehabluran bahan tersebut. Keamatan puncak termogravimetrik terbitan (DTG) yang jauh lebih rendah pada 1500 kGy juga menunjukkan kadar kehilangan jisim yang lebih tinggi disebabkan oleh degradasi serta kehilangan sifat mekanikal yang ketara pada dos berkenaan.

 

Kata kunci: Alur elektron; degradasi; penyinaran; politetrafluoroetilena; serbuk bersaiz mikro

 

REFERENCES

Barylski, A., Aniołek, K., Swinarew, A.S., Kaptacz, S., Gabor, J., Waśkiewicz, Z. & Stanula, A. 2020a. Novel organic material induced by electron beam irradiation for medical application. Polymers 12(2): 1-11.

Barylski, A., Swinarew, A.S., Aniołek, K., Kaptacz, S., Gabor, J., Stanula, A. & Wa, Z. 2020b. Tribological and mechanical behavior of graphite composites of polytetrafluoroethylene (PTFE) irradiated by the electron beam. Polymers 12(8): 1676.

Brown, E.N., Rae, P.J., Dattelbaum, D.M., Clausen, B. & Brown, D.W. 2008. In-situ measurement of crystalline lattice strains in polytetrafluoroethylene. Experimental Mechanics 48(1): 119-131.

Chai, L., Jiang, H., Zhang, B., Qiao, L., Wang, P., Weng, L. & Liu, W. 2019. Influence of the gamma irradiation dose on tribological property of polytetrafluoroethylene. Tribology International 2019: 106094. https://doi.org/10.1016/j.triboint.2019.106094

Dhanumalayan, E. & Joshi, G.M. 2018. Performance properties and applications of polytetrafluoroethylene ( PTFE ) - A review. Advanced Composites and Hybrid Materials 1: 247-268.

Dubey, K.A., Majji, S., Sinha, S.K., Bhardwaj, Y.K., Acharya, S., Chaudhari, C.V & Varshney, L. 2013. Synergetic effects of radiolytically degraded PTFE microparticles and organoclay in PTFE-reinforced ethylene vinyl acetate composites. Materials Chemistry and Physics 143(1): 149-154. http://dx.doi.org/10.1016/j.matchemphys.2013.08.039

Ebnesajjad, S. 2013. Introduction to Fluoropolymers: Materials, Technology and Applications. Norwich: William Andrew.

Ebnesajjad, S. & Morgan, R. 2012. Manufacturing and properties of low-molecular-weight fluoropolymer additives. In Fluoropolymer Additives. Norwich: William Andrew. pp. 37-52

Forsythe, J.S. & Hill, D.J.T. 2000. Radiation chemistry of fluoropolymers. Progress in Polymer Science (Oxford) 25(1): 101-136.

Frick, A., Sich, D., Heinrich, G., Lehmann, D., Gohs, U. & Stern, C. 2013. Properties of melt processable PTFE/PEEK blends: The effect of reactive compatibilization using electron beam irradiated melt processable PTFE. Journal of Applied Polymer Science 128(3): 1815-1827.

Goel, N.K., Kumar, V., Pahan, S., Bhardwaj, Y.K. & Sabharwal, S. 2011. Development of adsorbent from Teflon waste by radiation induced grafting: Equilibrium and kinetic adsorption of dyes. Journal of Hazardous Materials 193: 17-26. http://dx.doi.org/10.1016/j.jhazmat.2011.05.026

Khan, M.S., Lehmann, D. & Heinrich, G. 2008. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds. Express Polymer Letters 2(4): 284-293.

Khan, M.S., Lehmann, D., Heinrich, G., Gohs, U. & Franke, R. 2009. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite. Express Polymer Letters 3(1): 39-48.

Khatipov, S.A., Serov, S.A. & Buznik, V.M. 2020. Radiation Modification of Polytetrafluoroethylene. Opportunities for Fluoropolymers. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-821966-9/00006-7

Lappan, U., Geißler, U. & Scheler, U. 2007. The influence of the irradiation temperature on the ratio of chain scission to branching reactions in electron beam irradiated polytetrafluoroethylene (PTFE). Macromolecular Materials and Engineering 292(5): 641-645.

Lappan, U., Geißler, U. & Lunkwitz, K. 2000. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state. Radiation Physics and Chemistry 59(3): 317-322.

Lappan, U., Geißler, U. & Lunkwitz, K. 1999. Modification of polytetrafluoroethylene by electron beam irradiation in various atmospheres. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 151(1-4): 222-226.

Lappan, U., Geißler, U., Häußler, L., Pompe, G. & Scheler, U. 2004. The estimation of the molecular weight of polytetrafluoroethylene based on the heat of crystallisation. A comment on Suwa’s equation. Macromolecular Materials and Engineering 289(5): 420-425.

Lappan, U., Fuchs, B., Geißler, U., Scheler, U. & Lunkwitz, K. 2002. Number-average molecular weight of radiation-degraded poly(tetrafluoroethylene). An end group analysis based on solid-state NMR and IR spectroscopy. Polymer 43(16): 4325-4330.

Liu, S., Fu, C., Gu, A. & Yu, Z. 2015. Structural changes of polytetrafluoroethylene during irradiation in oxygen. Radiation Physics and Chemistry 109: 1-5. http://dx.doi.org/10.1016/j.radphyschem.2014.12.005

Lunkwitz, K., Lappan, U. & Scheler, U. 2004. Modification of perfluorinated polymers by high-energy irradiation. Journal of Fluorine Chemistry 125(6): 863-873.

Mohammadian-Kohol, M., Asgari, M. & Shakur, H.R. 2018. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafl uoroethylene sheet. Radiation Physics and Chemistry 145: 11-18.

Oshima, A., Tabata, Y., Kudoh, H. & Seguchi, T. 1995. Radiation induced crosslinking of polytetrafluoroethylene. Radiation Physics and Chemistry 45(2): 269-273.

Su, J., Wu, G., Liu, Y. & Zeng, H. 2006. Study on polytetrafluoroethylene aqueous dispersion irradiated by gamma ray. Journal of Fluorine Chemistry 127(1): 91-96.

Suwa, T., Takehisa, M. & Machi, S. 1973. Melting and crystallization behavior of poly(tetrafluoroethylene). New method for molecular weight measurement of poly(tetrafluoroethylene) using a differential scanning calorimeter. Journal of Applied Polymer Science 17(11): 3253-3257.

Tabata, Y., Suzuki, H. & Ikeda, S. 2013. Radiation modification of PTFE and its application. Radiation Physics and Chemistry 84: 14-19. http://dx.doi.org/10.1016/j.radphyschem.2012.06.054

Tabata, Y., Ikeda, S. & Oshima, A. 2001. Radiation-induced crosslinking and grafting of polytetrafluoroethylene. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 185(1-4): 169-174.

Vijay, A.R.M., Ratnam, C.T., Khalid, M., Appadu, S. & Gupta, T.C.S.M.  2020. Effect of radiation on the mechanical, morphological and thermal properties of HDPE/rPTFE blends. Radiation Physics and Chemistry 177(April): 109190. https://doi.org/10.1016/j.radphyschem.2020.109190

Voronova, N.A., Kupchishin, A.I., Niyazov, M.N., Lisitsyn, V.M., Tlebaev, K.B. & Gerasimenko, N.N. 2020. Deformation of polytetrafluorethylene at various static strain and electron irradiation. Nuclear Instruments and Methods in Physics Research, B: Beam Interations with Materials and Atoms 465: 59-61. https://doi.org/10.1016/j.nimb.2019.12.025

 

*Corresponding author; email: siddhar131@gmail.com

 

 

 

previous