Sains Malaysiana 51(12)(2022): 3879-3896

http://doi.org/10.17576/jsm-2022-5112-02

 

Morfologi Hakisan dan Sifat Serakan Lempung Kaolinit dan Montmorilonit di Kawasan Tropika

(Erosion Morphology and Dispersive Properties of Kaolinite and Montmorillonite Clays in the Tropical Region)

 

AZLAN SHAH NERWAN SHAH, NOR SHAHIDAH MOHD NAZER* & MUHAMMAD ISHA HARRIS

 

Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:15 March 2022/Accepted: 10 September 2022

 

Abstrak

Tanah terserak merupakan tanah bermasalah lantaran sifat semula jadinya yang mudah bertindak balas apabila terdapat kehadiran air lalu meningkatkan potensi hakisan cerun. Kewujudan ion natrium pada mineral lempung tanah melemahkan ikatan elektrokimia tanah terserak menyebabkan zarah lempung menolak dan menjauhi satu sama lain. Faktor ini mendorong pengasingan zarah tanah lalu membentuk fitur hakisan seperti ril dan galur rencam di permukaan bercerun, hakisan paip di dalam sub-permukaan landai dan kewujudan keruping merekah yang menjadi permasalahan dalam pembinaan struktur bangunan serta kejadian bencana alam. Kewujudan mineral lempung berbeza kapasiti pengembangan-pengecutan di kawasan tanah terserak menghasilkan morfologi dan sifat serakan tanah yang berbeza. Oleh itu, objektif kajian ini dijalankan adalah untuk mencirikan sifat fizikal tanah terserak tropika berdasarkan limpahan mineral lempung kaolinit dan montmorilonit serta hubungannya terhadap pembentukan morfologi hakisan cerun dan keruping tanah melalui pemerhatian lapangan dan analisis makmal. Hasil kajian mendapati kadar serakan dipengaruhi oleh sifat fizikal tanah seperti taburan saiz butiran, had cecair (LL), indeks keplastikan (PI), kandungan mineralogi lempung, nisbah % pasir/% zarah halus serta nisbah PI/LL. Analisis makmal menunjukkan tanah terserak dengan kehadiran mineral kaolinit dilihat kurang sensitif terhadap serakan berbanding mineral montmorilonit. Pemerhatian di lapangan mendapati tanah lempung kaolinit berasosiasi dengan pembentukan fitur hakisan ril dan galur rencam di sisi cerun secara lateral dan separa lateral, manakala tanah lempung montmorilonit tidak membentuk fitur hakisan yang nyata namun cenderung membentuk lapisan keruping dengan sistem jaringan rekahan heksagonal pada cerun bersudut hampir tegak (≈80°). Pencirian ini penting bagi meramal kewujudan dan taburan tanah terserak tropika berdasarkan limpahan mineral lempung yang berupaya menjadi pencetus kepada mekanisme geo-bencana yang sinonim berlaku di Malaysia.

 

Kata kunci: Geo-bencana; kaolinit; montmorilonit; morfologi hakisan; sifat serakan

 

Abstract

Dispersive soils are problematic soil due to its natural tendency to react quickly in the presence of water and increasing the risk of slope erosion. The presence of sodium ions on soil clay particles weakens the electrochemical bonds of the dispersed soil causing the clay particles to repel and migrate away from each other. This factor causes soil particles segregation and the formation of erosion features such as complex rills and gullies on a sloping surface, pipes in the soil's subsurface and the presence of cracks which cause problems in the construction of building structures and natural disasters. The presence of clay minerals with varying swelling-shrinkage capacities in the dispersed soil area results in a variety of soil morphology and properties. As a result, the objective of this study was to characterize the physical properties of tropical dispersive soil based on the abundance of kaolinite and montmorillonite clay minerals as well as their correlation to the formation of slope erosion morphology and soil crusting through field observations and laboratory analysis. The study discovered that physical soil properties such as particle size, liquid limit (LL), plasticity index (PI), clay mineralogy   content, % sand/% fine soils ratio and PI/LL ratio influence dispersion rate. Laboratory analysis shows that dispersed soil containing kaolinite minerals is less sensitive to dispersion than soil containing montmorillonite minerals. Field observations showed that kaolinite clay soils form complex rills and gullies erosion features on the lateral and semi-lateral slopes, whereas montmorillonite clay soils do not form significant erosion characteristics but do form crust layers with hexagonal cracking network systems on almost perpendicular angled slopes (≈80°). This characterization is crucial for predicting the presence and distribution of tropical dispersive soils based on the abundance of clay minerals that can trigger geo-hazards mechanisms which are synonymous in Malaysia.

 

Keywords: Dispersive properties; erosion morphology; geo-hazards; kaolinite; montmorillonite

 

REFERENCES

Abbaslou, H., Hadifard, H. & Ghanizadeh, A.R. 2020. Effect of cations and anions on flocculation of dispersive clayey soils. Heliyon 6(2): e03462.

Abbaslou, H., Hadifard, H. & Poorgohardi, A. 2016. Characterization of dispersive problematic soils and engineering improvements: A review. Computations and Materials in Civil Engineering 1(2): 65-83.

Aitchison, J.C. 1994. Early cretaceous (pre-Albian) radiolarians from blocks in Ayer Complex melange, eastern Sabah, Malaysia, with comments on their regional tectonic significance and the origins of enveloping melanges. Journal of Southeast Asian Earth Sciences 9(3): 255-262.

ASTM 7928 -17. 2017. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils using the Sedimentation (Hydrometer) Analysis. West Conshohocken, PA: ASTM International.

ASTM D2487. 2006. Standard Practice for Classification of Soils for Engineering Purposes. West Conshohocken, PA: ASTM International.

ASTM D4221-18. 2018. Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. West Conshohocken, PA: ASTM International.

ASTM D4318-17e1. 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International.

ASTM D4647/D4647M-13. 2020. Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test. West Conshohocken, PA: ASTM International.

ASTM D6572-20. 2020. Standard Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test. West Conshohocken, PA: ASTM International.

ASTM D6913/D6913M-17. 2017. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. West Conshohocken, PA: ASTM International.

ASTM D854-14. 2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International.

Azlan, N.N.N., Simon, N., Hussin, A., Roslee, R. & Ern, L.K. 2017. Pencirian sifat kimia bahan tanah pada cerun gagal di sepanjang jalan Ranau-Tambahan, Sabah, Malaysia. Sains Malaysiana 46(6): 867-877.

Bao, S.C., Wang, Q. & Bao, X.H. 2013. Study on dispersive influencing factors of dispersive soil in Western Jilin Based on grey correlation degree method. Applied Mechanics and Materials 291-294(2): 1096-1100.

Basga, D.S., Tsozué, D., Temga, J.P., Balna, J. & Nguetnkam, J.P. 2018. Land use impact on clay dispersion/flocculation in irrigated and flooded Vertisols from Northern Cameroon. International Soil and Water Conservation Research 6(3): 237-244.

Belarbi, A., Zadjaoui, A. & Bekkouche, A. 2013. Dispersive clay: Influence of physical and chemical properties on dispersion degree. Electronic Journal of Geotechnical Engineering 18: 1727-1738.

Bougeard, D., Smirnov, A.S. & Geidel, E. 2000. Vibrational spectra and structure of kaolinite: A computer simulation study. Journal of Physical Chemistry B 104: 9210-9217.

Brigatti, M., Galan, E. & Theng, B. 2006. Structures and mineralogy of clay minerals. Developments in Clay Science 1: 19-86.

Chang, K-T., Lee, K.Z.-Z. & Wu, H-Y. 2020. Internal erosion failure of uniform sands under confinement and constricted seepage exit. Water 12: 2417.

Charlton, R. 2008. Fundamentals of Fluvial Geomorphology. New York: Routledge.

Dang, A., Bennett, J., Marchuk, A., Biggs, A. & Raine, S. 2018. Evaluating dispersive potential to identify the threshold electrolyte concentration in non-dispersive soils. Soil Research 56: 549-559.

Dinh, B.H., Nguyen, A.D., Jang, S.Y., Jang, S-Y. & Kim, Y-S. 2021. Evaluation of erosion characteristics of soils using the pinhole test. Geo-Engineering 12: 6.

Djarwadi, D. 2007. Dispersivity test of Duriangkang Dam filling material. Dinamika TEKNIK SIPIL 7(1): 11-19. 

DPIW. 2009. Dispersive Soils and Their Management. Tasmania: Sustainable Land Use.

Fan, S. 2017. Internal characteristics of loose solid source of debris flow in Zhouqu. Sains Malaysiana 46(11): 2179-2186.

FAO. 2020. Mapping of Salt-Affected Soils - Technical Specifications and Country Guidelines. Rome: Food and Agriculture Organization of the United Nations.

Fell, R., Hanson, G.J., Herrier, G., Marot, D. & Wahl, T. 2013. Relationship between the erosion properties of soils and other parameters. Dlm. Erosion in Geomechanics Applied to Dams and Levees, disunting oleh Bonelli, S. & Nicot, F. Hoboken: Wiley. hlm. 343-381.

Garzón, E., Sánchez-Soto, P.J. & Romero, E. 2010. Physical and geotechnical properties of clay phyllites. Applied Clay Science 48(3): 307-318.

Hassanlourad, M., Rokni, M.N., Hassanlo, M. & Badrlou, A. 2017. Dispersive clay stabilised by alum and lime. International Journal of GEOMATE 12: 156-162.

Heshmati, M., Majid, N., Jusop, S., Gheitury, M. & Abdu, A. 2013. Effects of soil and rock mineralogy on soil erosion features in the Merek Watershed, Iran. Journal of Geographic Information System 5(3): 248-257.

Ismail, F., Mohamed, Z. & Mukri, M. 2008. A study on the mechanism of internal erosion resistance to soil slope instability. Electronic Journal of Geotechnical Engineering 13(A): 1-12.

Kaliakin, V.N. 2017. Example problems related to soil identification and classification. Dlm. Soil Mechanics, United Kingdom: Butterworth-Heinemann. hlm. 51-92.

Khoirullah, N., Mufti, I.J., Sophian, I., Iskandarsyah, T.Y.W.M. & Muslim, D. 2019. Erosion potential based on erodibility and plasticity index data on Cilengkrang, Bandung, West Java, Indonesia. IOP Conference Series: Earth and Environmental Science 396: 012035.

Knighton, D. 1998. Fluvial Forms & Processes. A New Perspective. London: Arnold.

Knodel, P.C. 1991. Characteristics and Problems of Dispersive Clay Soils. Denver: U.S Bureau of Reclamation.

Ksenija, D., Laslo, C., Nenad, S. & Gordana, H.M. 2018. Methods for assessment and identification of dispersive soils. XVI Danube - European Conference on Geotechnical Engineering, Skopje, R. Macedonia. hlm. 205-210.

Kumari, N. & Mohan, C. 2021. Basics of Clay Minerals and Their Characteristic Properties. Dlm. Clay and Clay Minerals, edited by Nascimento, G.M.D. London: IntechOpen.

Ledesma, A. 2016. Cracking in desiccating soils. E3S Web of Conferences 9: 03005.

Levy, G.J. & Shainberg, I. 2005. Sodic soils. Dlm. Encyclopedia of Soils in the Environment, disunting oleh Hillel, D., Rosenzweig, C., Powlson, D., Scow, K., Singer, M. & Sparks, D. New York: Academic Press. hlm. 504-513.

Lipiec, J., Czyż, E.A., Dexter, A.R. & Siczek, A. 2018. Effects of soil deformation on clay dispersion in loess soil. Soil and Tillage Research 184: 203-206.

Maharaj, A. & Paige-Green, P. 2015. The pinhole test for dispersive soil identification. Dlm. Engineering Geology for Society and Territory, Vol. 5, disunting oleh Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P. & Luino, F. Springer. hlm. 1299-1303.

Masoodi, A., Majdzadeh Tabatabai, M.R., Noorzad, A. & Samadi, A. 2019. Riverbank stability under the influence of soil dispersion phenomenon. Journal of Hydrologic Engineering 24(3): 05019001.

Mizal-Azzmi, N., Mohd-Noor, N. & Jamaludin, N. 2011. Geotechnical approaches for slope stabilization in residential area. Procedia Engineering 20: 474-482.

Musta, B., Erfen, H.F.W., Karim, A.S.R., Kim, K.W. & Kim, J.H. 2019. Physico-chemical properties and mineralogical identification of soils from Mélange in Beluran-Sandakan, Sabah, Malaysia. Journal of Physics: Conference Series 1358: 012073.

Nagy, G., Nagy, L. & Kopecskó, K. 2016. Examination of the physico-chemical composition of dispersive soils. Periodica Polytechnica Civil Engineering 60(2): 269-279.

Page, K.L., Dang, Y.P., Dalal, R.C., Kopittke, P.M. & Menzies, N.W. 2020. The impact, identification and management of dispersive soils in rainfed cropping systems. European Journal of Soil Science 2020: 1-20. https://doi.org/ 10.1111/ejss.13070

Patcharapreecha, P., Topark Ngarm, B., Goto, I. & Kimura, M. 1990. Studies on saline soils in Khon Kaen Region, Northeast Thailand. Soil Science and Plant Nutrition 36(3): 363-374.

Penner, D. & Lagaly, G. 2001. Influence of anions on the rheological properties of clay mineral dispersions. Applied Clay Science 19: 131-142.

Poesen, J., Vandekerckhove, L., Nachtergaele, J., Oostwoud Wijdenes, D., Verstraeten, G. & van Wesemael, B. 2002. Gully erosion in dryland environments. Dlm. Dryland Rivers: Hydrology and Geomorphology of Semi-Arid Channels, disunting oleh Bull, L.J. & Kirkby, M.J. Chichester: Wiley. hlm. 229-262.

Prakash, S. & Jain, P.K. 2002. Engineering Soil Testing. Roorkee: Nem Chand & Bros.

Premkumar, S., Piratheepan, J., Arulrajah, A., Disfani, M.M. & Rajeev, P. 2016. Experimental study on contact erosion failure in pavement embankment with dispersive clay. Journal of Materials in Civil Engineering 28: 04015179.

Rengasamy, P. 2018. Irrigation water quality and soil structural stability: A perspective with some new insights. Agronomy 8(5): 72.

Richards, K.S. & Reddy, K.R. 2007. Critical appraisal of piping phenomena in earth dams. Bulletin of Engineering Geology and the Environment 66: 381-402.

Robbins, B.A. & Griffiths, D.V. 2018. Internal erosion of embankments: A review and appraisal. Rocky Mountain Geo-Conference 2018, Reston, VA: American Society of Civil Engineers. hlm. 61-75.

Roy, S. & Bhalla, S.K. 2017. Role of geotechnical properties of soil on civil engineering structures. Resources and Environment 7(4): 103-109.

Savaş, H. 2016. Consolidation and swell characteristics of dispersive soils stabilized with lime and natural zeolite. Science and Engineering of Composite Materials 23(6): 589-598.

Sayehvand, S. & Dehghani, M. 2014. Identification and management of dispersive soils. Electronic Journal of Geotechnical Engineering 19: 9023-9032.

Shamsuddin Jusop. 1981. Asas Sains Tanah. Kuala Lumpur: Dewan Bahasa dan Pustaka.

Sherard, J.L., Dunnigan, L.P. & Decker, R.S. 1976. Identification and nature of dispersive soils. Journal of the Geotechnical Engineering Division 102(4): 287-301.

Shihua, C., Shuijin, S., Yaohui, H. & Qinghong, M. 2017. Research on dispersive discrimination test methods of illite clay soils in Zhejiang. Proceedings of the 2016 International Conference on Architectural Engineering and Civil Engineering. hlm. 224-230.

Singh, B., Gahlot, P. & Purohit, D.G.M. 2018. Dispersive soils-characterization, problems and remedies. International Research Journal of Engineering and Technology 5(6): 2478-2484.

Stumpf, A.J. 2013. Dispersive soil hazards. Dlm. Encyclopedia of Natural Hazards, disunting oleh Bobrowsky, P.T. Dordrecht: Springer. hlm. 186-188.

Taha, O.M.E. & Taha, M.R. 2011. Cracks in soils related to desiccation and treatment. Australian Journal of Basic and Applied Sciences 5(8): 1080-1089.

Tournassat, C., Vinsot, A., Gaucher, E.C. & Altmann, S. 2015. Chemical conditions in clay-rocks. Dlm. Natural and Engineered Clay Barriers, disunting oleh Tournassat, C., Steefel, C., Bourg, I. & Bergaya, F. hlm. 71-100.

Tran, D.B., Hoang, T.V. & Dargusch, P. 2015. An assessment of the carbon stocks and sodicity tolerance of disturbed Melaleuca forests in Southern Vietnam. Carbon Balance Manage 10(15). https://doi.org/10.1186/s13021-015-0025-6

Uddin, F. 2018. Montmorillonite: An introduction to properties and utilization. Dlm. Current Topics in the Utilization of Clay in Industrial and Medical Applications, disunting oleh Zoveidavianpoor, M. London: IntechOpen.

Ulery, A.L. 2005. Edaphology. In Encyclopedia of Soils in the Environment, disunting oleh Hillel, D. New York: Academic Press. hlm. 419-425.

Umesh, T.S., Dinesh, S.V. & Sivapullaiah, P.V. 2011. Characterization of dispersive soils. Materials Sciences and Applications 2: 629-633.

Vacher, C.A., Loch, R.J. & Raine, S.R. 2004. Identification and Management of Dispersive Mine Spoils. Technical Report. Australian Centre for Mining Environmental Research, Kenmore, Australia.

Vakili, A.H., Shojaei, S.I., Salimi, M., bin Selamat, M.R. & Farhadi, M.S. 2020. Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils. Soils and Foundations 60(1): 167-178.

Vakili, A.H., bin Selamat, M.R., Aziz, H.B.A., Mojiri, A., Ahmad, Z. & Safarzadeh, M. 2017. Treatment of dispersive clay soil by ZELIAC. Geoderma 285: 270-279.

Wang, L., Yuan, X. & Wang, M. 2020. Landslide failure mechanisms of dispersive soil slopes in seasonally frozen regions. Advances in Civil Engineering 2020: 1-13.

Wei, X., Gao, C. & Liu, K. 2020. A review of cracking behavior and mechanism in clayey soils related to desiccation. Advances in Civil Engineering 2020: 1-12.

Yang, S.L., Solheim, A., Forsberg, C.F., Kvalstad, T., Feng, X.L., Li, A.L. & Urgeles, R. 2009. Geotechnical properties of river-fed sediments compared with glacier-fed sediments. Marine Georesources and Geotechnology 27: 281-295.

Yong, R.N., Nakano, M. & Pusch, R. 2012. Environmental Soil Properties and Behaviour. Boca Raton: CRC Press.

Zare-junaghani, N., Mehrnahad, H. & Torabi-kaveh, M. 2019. Assessing dispersivity and expansivity of clay soils in the South-East of Yazd with aim of investigating correlation between them. Periodica Polytechnica Civil Engineering 63(4): 1112-1124.

Zhang, J., Wang, Q., Wang, W. & Zhang, X. 2021. The dispersion mechanism of dispersive seasonally frozen soil in western Jilin Province. Bulletin of Engineering Geology and the Environment 80: 5493-5503.

Zhao, P., Shao, M.A., Omran, W. & Amer, A.M. 2011. Effects of erosion and deposition on particle size distribution of deposited farmland soils on the chinese loess plateau. Revista Brasileira de Ciência Do Solo 35(6): 2135-2144.

Zund, P.R. 2017. Soil Erodibility. Userguide. Brisbane, Queensland: Department of Science, Information Technology, Innovation Government.

 

*Corresponding author; email: shahidahnazer@ukm.edu.my

 

 

 

 

 

previous