Sains Malaysiana 51(12)(2022): 3923-3935

http://doi.org/10.17576/jsm-2022-5112-05

 

Antibacterial Properties of Chitosan Isolated from the Black Soldier Fly, Hermetia illucens

(Sifat Antibakteria Kitosan Pencilan daripada Lalat Askar Hitam, Hermetia illucens)

 

TEO HUI PENG, LAW KE WEI, ERIC CHAN WEI CHIANG & MICHELLE SOO OI YOON*

 

Faculty of Applied Sciences, UCSI University KL, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 22 December 2021/Accepted: 22 August 2022

 

Abstract

Insects are receiving wide attention as alternative food and feed resources, and for the production of useful by-products such as chitin, which can be converted into chitosan, a natural antibacterial agent. The larvae of Hermetia illucens, commonly known as Black Soldier Fly (BSF), can be reared on organic waste substrates and can be produced on a large scale. In this study, we focused on the antibacterial activity of chitosan obtained from BSF. Chitin from different growth phases of BSF was isolated using chemical treatments, characterized, and further synthesized into chitosan by deacetylation. The identities and structures of all isolated and synthesized compounds were verified using Fourier-transform infrared spectroscopy (FTIR). The antibacterial effect of BSF chitosan compounds against pathogenic bacteria were assessed with the determination of a minimum inhibitory concentration (MIC). Results showed that the chitin content increased gradually during the transition from larvae to adult BSF, with the highest amount obtained in the pupal stage. In the antibacterial susceptibility assay, Staphylococcus aureus was the most resistant to the action of BSF chitosan, with no significant effect exerted on its growth. For other species of bacteria, BSF chitosan could only restrict bacterial growth at concentrations of 0.25% or 0.5%, with the two most susceptible species being identified as Pseudomonas aeruginosa and Serratia marcescens. In conclusion, BSF chitosan exhibited antibacterial activity against different bacteria with varying sensitivities, in which the chitosan concentration was demonstrated to play an essential role.

 

Keywords: Antibacterial activity; Black Soldier Fly; chitin; chitosan; Hermetia illucens

 

Abstrak

Serangga mendapat perhatian meluas sebagai punca makanan dan makanan alternatif, dan untuk penghasilan produk sampingan yang berguna seperti kitin, yang boleh ditukar menjadi kitosan, agen antibakteria semula jadi. Larva Hermetia illucens, biasanya dikenali sebagai Lalat Askar Hitam (BSF), boleh diternak pada substrat sisa organik dan boleh dihasilkan secara besar-besaran. Dalam kajian ini, tumpuan diberikan kepada aktiviti antibakteria kitosan yang diperoleh daripada BSF. Kitin daripada fasa pertumbuhan BSF yang berbeza telah diasingkan menggunakan rawatan kimia, dicirikan dan selanjutnya disintesis menjadi kitosan melalui penyahetilasi. Identiti dan struktur semua sebatian terpencil dan tersintesis telah disahkan menggunakan spektroskopi inframerah transformasi Fourier (FTIR). Kesan antibakteria sebatian kitosan BSF terhadap bakteria patogen telah dinilai dengan penentuan kepekatan perencatan minimum (MIC). Keputusan menunjukkan bahawa kandungan kitin meningkat secara beransur-ansur semasa peralihan daripada larva kepada BSF dewasa dengan jumlah tertinggi diperoleh pada peringkat pupa. Dalam asai kerentanan antibakteria, Staphylococcus aureus adalah yang paling tahan terhadap tindakan kitosan BSF, tanpa kesan ketara terhadap pertumbuhannya. Bagi spesies bakteria lain, kitosan BSF hanya boleh menyekat pertumbuhan bakteria pada kepekatan 0.25% atau 0.5% dengan dua spesies yang paling rentan dikenal pasti sebagai Pseudomonas aeruginosa dan Serratia marcescens. Kesimpulannya, kepekatan kitosan memainkan peranan penting kerana kitosan BSF mempamerkan aktiviti antibakteria terhadap bakteria yang berlainan dengan sensitiviti yang berbeza-beza.

 

Kata kunci: Aktiviti anti bakteria; kitin; kitosan; Hermetia illucens; Lalat Askar Hitam

 

REFERENCES

Abdou, E., Nagy, K. & Elsabee, M. 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology 99(5): 1359-1367.

Ai, H., Wang, F., Xia, Y., Chen, X. & Lei, C. 2012. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chemistry 132(1): 493-498.

Ai, H., Wang, F.R., Yang, Q.S., Zhu, F. & Lei, C.L. 2008. Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydrate Polymers 72: 419-423.

Al Sagheer, F., Al-Sughayer, M., Muslim, S. & Elsabee, M. 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers 77(2): 410-419.

Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G. & Heras, A. 2009. Functional characterization of chitin and chitosan. Current Chemical Biology 3(2): 203-230.

Benhabiles, M., Salah, R., Lounici, H., Drouiche, N., Goosen, M. & Mameri, N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29(1): 48-56.

Cortizo, M., Berghoff, C. & Alessandrini, J. 2008. Characterization of chitin from Illex argentinus squid pen. Carbohydrate Polymers 74: 10-15.

Diener, S., Zurbrügg, C., Roa Gutiérrez, F., Hong, N.D., Morel, A., Koottatep, T. & Tockner, K. 2011. Black soldier fly larvae for organic waste treatment. In Proceedings of the Wastesafe 2011 - 2nd International Conference on Solid Waste Management in Developing Countries, edited by Alamgir, M., Bari, Q.H., Rafizul, I.M., Islam, S.M.T., Sarkar, G. & Howlader, M.K. Khulna, Bangladesh, 13-15 February. p. 52.

Fernandez-Kim, S. 2004. Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols (Master’s thesis). Louisiana State University and Agricultural and Mechanical College (Unpublished).

Goy, R., Morais, S. & Assis, O. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26(1): 122-127.

Jackson, N., Czaplewski, L. & Piddock, L. 2018. Discovery and development of new antibacterial drugs: Learning from experience? Journal of Antimicrobial Chemotherapy 73(6): 1452-1459.

Jayanegara, A., Haryati, R., Nafisah, A., Suptijah, P., Ridla, M. & Laconi, E. 2020. Derivatization of chitin and chitosan from Black Soldier Fly (Hermetia illucens) and their use as feed additives: An in vitro study. Advances in Animal and Veterinary Sciences 8(5): 472-477.

Jiang, L., Wang, F., Han, F., Prinyawiwatkul, W., No, H. & Ge, B. 2013. Evaluation of diffusion and dilution methods to determine the antimicrobial activity of water-soluble chitosan derivatives. Journal of Applied Microbiology 114(4): 956-963.

Kanatt, S., Chander, R. & Sharma, A. 2008. Chitosan and mint mixture: A new preservative for meat and meat products. Food Chemistry 107(2): 845-852.

Kaya, M., Sofi, K., Sargin, I. & Mujtaba, M. 2016. Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate Polymers 145: 64-70.

Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y., Tozak, K. & Mol, A. 2015a. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnology and Bioprocess Engineering 20(1): 168-179.

Kaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L. & Sofi, K. 2015b. Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers 132: 9-16.

Kaya, M., Baran, T., Erdoğan, S., Menteş, A., Aşan Özüsağlam, M. & Çakmak, Y. 2014. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Materials Science and Engineering 45: 72-81.

Khayrova, A., Lopatin, S. & Varlamov, V. 2021. Obtaining chitin, chitosan and their melanin complexes from insects. International Journal of Biological Macromolecules 167: 1319-1328.

Khayrova, A., Lopatin, S. & Varlamov, V. 2019. Black Soldier Fly Hermetia illucens as a novel source of chitin and chitosan. International Journal of Sciences 8(4): 81-86.

Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J. & Stepnowski, P. 2010. Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs 8(5): 1567-1636.

Lagat, M., Were, S., Ndwigah, F., Kemboi, V., Kipkoech, C. & Tanga, C. 2021. Antimicrobial activity of chemically and biologically treated chitosan prepared from Black Soldier Fly (Hermetia illucens) pupal shell waste. Microorganisms 9(12): 2417.

Li, J., Wu, Y. & Zhao, L. 2016. Antibacterial activity and mechanism of chitosan with ultra-high molecular weight. Carbohydrate Polymers 148: 200-205.

Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J. & Zhu, F. 2012. Extraction and characterization of chitin from the Beetle Holotrichia parallela Motschulsky. Molecules 17(4): 4604-4611.

Liu, X., Guan, Y., Yang, D., Li, Z. & Yao, K. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science 79(7): 1324-1335.

Makkar, H., Tran, G., Heuzé, V. & Ankers, P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology 197: 1-33.

Mohammed, M., Williams, P. & Tverezovskaya, O. 2013. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids 31(2): 166-171.

Mohan, K., Ganesan, A., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., Chandirasekar, R. & Revathi, N. 2020. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science & Technology 105: 17-42.

Nemtsev, S., Zueva, O., Khismatullin, M., Albulov, A. & Varlamov, V. 2004. Isolation of chitin and chitosan from honeybees. Applied Biochemistry and Microbiology 40(1): 39-43.

No, H., Park, N., Lee, S., Hwang, H. & Meyers, S. 2002. Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu. Journal of Food Science 67(4): 1511-1514.

Paulino, A., Simionato, J., Garcia, J. & Nozaki, J. 2006. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers 64(1): 98-103.

Purkayastha, D. & Sarkar, S. 2020. Physicochemical structure analysis of chitin extracted from pusa exuviae and dead imago of wild black soldier fly (Hermetia illucens). J. Polym. Environ. 28: 445-457.

Qi, L., Xu, Z., Jiang, X., Hu, C. & Zou, X. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339(16): 2693-2700.

Ravi, H., Degrou, A., Costil, J., Trespeuch, C., Chemat, F. & Vian, M. 2020. Larvae mediated valorization of industrial, agriculture and food wastes: Biorefinery concept through bioconversion, processes, procedures, and products. Processes 8(7): 857.

Sagoo, S., Board, R. & Roller, S. 2002. Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts. Letters in Applied Microbiology 34(3): 168-172.

Shimahara, K. & Takiguchi, Y. 1988. Preparation of crustacean chitin. Methods in Enzymology 161: 417-423.

Smets, R., Verbinnen, B., Van De Voorde, I., Aerts, G., Claes, J. & Van Der Borght, M. 2020. Sequential extraction and characterisation of lipids, proteins, and chitin from Black Soldier Fly (Hermetia illucens) larvae, prepupae, and pupae. Waste and Biomass Valorization 11(12): 6455-6466.

Song, C., Yu, H., Zhang, M., Yang, Y. & Zhang, G. 2013. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International Journal of Biological Macromolecules 60: 347-354.

Stankus, A. 2021. State of world aquaculture 2020 and regional reviews: FAO webinar series. In FAO Aquaculture Newsletter. pp. 17-18.

Terbojevidh, M. & Cosani, A. 1997. Molecular weight determination of chitin and chitosan. In Chitin Handbook, edited by Muzzarelli, R.A.A. & Peter, M.G. Italy: European Chitin Society. pp. 87-101.

Tolaimate, A., Desbrieres, J., Rhazi, M. & Alagui, A. 2003. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26): 7939-7952.

Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C. & Hahn, T. 2022. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports 12(1).

Wang, G. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection 55: 916-919.

Waśko, A., Bulak, P., Polak-Berecka, M., Nowak, K., Polakowski, C. & Bieganowski, A. 2016. The first report of the physicochemical structure of chitin isolated from Hermetia illucens. International Journal of Biological Macromolecules 92: 316-320.

Xia, J., Ge, C. & Yao, H. 2021. Antimicrobial peptides from Black Soldier Fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals 11(7): 1937.

Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K. & Nasri, M. 2014. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology 185: 57-63.

Zhang, A., Qin, Q., Zhang, H., Wang, H., Li, X., Miao, L. & Wu, Y. 2011. Preparation and characterization of food grade chitosan from housefly larvae. Czech Journal of Food Sciences 29(6): 616-623.

 

*Corresponding author; email: michellesoo@ucsiuniversity.edu.my

 

 

 

 

 

previous