Sains Malaysiana 51(12)(2022):
3949-3966
http://doi.org/10.17576/jsm-2022-5112-07
A Quinoline-Based
Fluorescent Labelling for Zinc Detection and DFT Calculations
(Pelabelan Pendarfluor Berasaskan Kuinolina untuk Pengesanan Zink dan Pengiraan DFT)
NUR SYAMIMI MOHAMAD1,
LING LING TAN1, GOH CHOO TA1,
LEE YOOK HENG2, NADHRATUN NAIIM MOBARAK2, AZWAN MAT LAZIM2,
SUHAILA SAPARI3, FAZIRA ILYANA ABDUL RAZAK3 & NURUL
IZZATY HASSAN2,*
1Southeast Asia Disaster Prevention
Research Initiative (SEADPRI-UKM), Institute for Environment and Development
(LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Chemical Sciences,
Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department of Chemistry, Faculty of
Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Bahru,
Johor Darul Takzim,
Malaysia
Received:
8 June 2022/Accepted: 1 September 2022
Abstract
8-carboxamidoquinoline
derivatives were gradually investigated as zinc's label in resolving weak water
solubility, poor membrane permeability, and difficulty measuring free Zn2+ ion in cells quantitatively. The potential of 2-oxo-2-(quinolin-8-ylamino)acid (OQAA) as zinc's label was prepared
and characterized spectroscopically. Theoretical and experimental data of OQAA
were compared and discussed. The optimized molecular structure, molecular
orbital of HOMO-LUMO, energy band gaps, and molecular electrostatic potential
(MEP) of OQAA were carried out using the DFT method with
Becke-3-Parameter-Lee-Yang-Parr (B3LYP) and 6-31G(d,p) basis set. The
intermolecular interaction energy of OQAA-Zn is calculated by using the hybrid
method of GEN with a basis set of LANL2DZ for Zn2+ ion and
DFT/6-31G(d,p)
for OQAA ligand. OQAA exhibited remarkable and excellent fluorescence
enhancement selective and qualitatively only for Zn2+ than other
metal cations tested (Fe2+, Cu2+, Co2+,
Ni2+, Hg2+, Cd2+) under a long wavelength.
Job's plot and 1H NMR titrations indicate OQAA-Zn2+ has a
binding ratio at 1:1 stoichiometry (M1L1). Substantial
shifting of amide N-H proton to higher chemical shift and intensity of the
proton peak of N-H amide decrease abruptly implies that Zn2+ is
binding to an amide. These changes confirmed interactions among the ligand OQAA
and metal Zn2+ ion. As a result of the benefits discussed, OQAA could effectively and selectively optimize and
fabricate for Zn2+ sensors.
Keywords:
Density functional theory; fluorescent sensor; metal cation; zinc label; 8-carboxamidoquinoline
Abstrak
Bahan terbitan 8-karboksamidokuinolina semakin mendapat perhatian sebagai label zink dalam menyelesaikan masalah keterlarutan air
yang lemah, kebolehtelapan membran yang lemah, dan kesukaran mengukur ion Zn2+ bebas dalam sel secara kuantitatif. Sebatian asid 2-okso-2-(kuinolina-8-ylamino) (OQAA) yang berpotensi sebagai label zink telah disintesiskan dan dicirikan secara spektroskopi. Data teori dan uji kaji OQAA dibandingkan dan dibincangkan. Struktur molekul yang dioptimumkan, orbital molekul HOMO-LUMO, jurang jalur tenaga dan potensi elektrostatik molekul (MEP)
OQAA telah dijalankan menggunakan kaedah DFT dengan Becke-3-Parameter-Lee-Yang-Parr (B3LYP) dan set asas 6-31G(d,p). Seterusnya, tenaga interaksi antara molekul OQAA-Zn dihitung menggunakan kaedah hibrid GEN dengan set asas LANL2DZ untuk ion Zn2+ dan DFT/6-31G(d,p) untuk ligan OQAA. OQAA menunjukkan peningkatan pendarfluor yang luar biasa dan cemerlang secara selektif dan kualitatif hanya untuk Zn2+ berbanding kation logam lain yang diuji (Fe2+,
Cu2+, Co2+, Ni2+, Hg2+, Cd2+)
di bawah lampu UV gelombang panjang. Plot Job dan titrasi 1H NMR menunjukkan OQAA-Zn2+ mempunyai nisbah pengikatan pada stoikiometri 1:1 (M1L1). Peralihan besar amida N-H proton kepada anjakan kimia yang lebih tinggi dan keamatan puncak proton amida N-H menurun secara mendadak memberi gambaran bahawa Zn2+ terikat pada amida. Perubahan ini mengesahkan terdapat interaksi antara ligan OQAA dan ion logam Zn2+. Kesimpulannya, hasil kajian yang dibincangkan ini membuktikan sebatian OQAA ini boleh dilanjutkan dengan pengoptimuman dan fabrikasi sensor Zn2+ yang berkesan dan selektif.
Kata kunci: Kation logam; label zink; sensor pendarfluor; 8-karboksamidokuinolina; teori kefungsian ketumpatan
REFERENCES
Al-Khalqi, E.M., Hamid, M.A.A., Shamsudin,
R., Al-Hardan, N.H., Jalar,
A. & Keng, L.K. 2021. Zinc oxide nanorod electrolyte-insulator- Semiconductor sensor for
enhanced 2-Methoxyethanol selectivity. IEEE Sensors Journal 21(5):
6234-6240.
Atalay, Y.B., Di Toro, D.M. & Carbonaro, R.F. 2013. Estimation of stability constants for
metal-ligand complexes containing neutral nitrogen donor atoms with
applications to natural organic matter. Geochimica et Cosmochimica Acta 122: 464-477.
Awual, M.R., Kobayashi, T., Miyazaki,
Y., Motokawa, R., Shiwaku,
H., Suzuki, S., Okamoto, Y. & Yaita, T. 2013.
Selective lanthanide sorption and mechanism using novel hybrid Lewis base
(N-Methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified
adsorbent. Journal of Hazardous Materials 252-253: 313-320.
Bányai, I. 2018. Dynamic NMR for
coordination chemistry. The Royal Society of Chemistry 42: 7569-7581.
Basabe-Desmonts, L., Müller, T.J.J. & Crego-Calama, M. 2007. Design of fluorescent materials for
chemical sensing. Chemical Society Reviews 36(6): 993-1017.
Bozym, R.A., Thompson, R.B. & Fierke, C.A. 2006. Importance of measuring free zinc in
cells. In Reviews in Fluorescence 2006, edited by Geddes, C.D. & Lakowicz, J.R. Boston: Springer. pp. 399-419.
Bukheet Hassan, H. 2014. Density function
theory B3LYP/6-31G**calculation of geometry optimization and energies of
donor-bridge-acceptor molecular system. Research Article International
Journal of Current Engineering and Technology 4(4): 2342-2345.
Chandrakumar, K.R.S. & Pal, S. 2002. A
systematic study on the reactivity of Lewis acid-base complexes through the
local hard-soft acid-base principle. Journal of Physical Chemistry A 106(48): 11775-11781.
Chen, Y.,
Han, K.Y. & Liu, Y. 2007. Effective switch-on fluorescence sensing of zinc
(II) ion by 8-Aminoquinolino-β-Cyclodextrin/Adamantaneacetic acid system in water. Bioorganic and
Medicinal Chemistry 15(13): 4537-4542.
Czaplinska, B., Spaczynska,
E. & Musiol, R. 2018. Quinoline fluorescent probes for zinc - from diagnostic to therapeutic molecules in
treating neurodegenerative diseases. Medicinal Chemistry 14(1): 19-33.
Dong, Y.,
Fan, R., Chen, W., Wang, P. & Yang, Y. 2017. A simple quinolone schiff-base containing CHEF based fluorescence' turn-on' chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility. Dalton Transactions 46(20): 6769-6775.
Dong, Z.,
Le, X., Zhou, P., Dong, C. & Ma, J. 2014. An 'off-on-off' fluorescent probe
for the sequential detection of Zn2+ and hydrogen sulfide in aqueous
solution. New Journal of Chemistry 38(4): 1802-1808.
Fu, H.,
Liu, H., Zhao, L., Xiao, B., Fan, T. & Jiang, Y. 2019. A quinoline-based selective 'turn on' chemosensor for zinc (II) via Quad-core complex, and its application in live cell imaging. Tetrahedron 75(49): 130710.
Galano, A. & Alvarez-Idaboy, J.R. 2006. A new approach to counterpoise
correction to BSSE. Journal of Computational Chemistry 27(11):
1203-1210.
Gupta,
V.K., Jain, A.K. & Maheshwari, G. 2006. A new Zn2+-selective
potentiometric sensor based on dithizone - PVC
membrane. Chemia Analityczna 51(6): 889-898.
Hashmi,
M.A., Khan, A., Ayub, K. & Farooq, U. 2014.
Spectroscopic and density functional theory studies of 5, 7, 3’,
5’-Tetrahydroxyflavanone from the leaves of Olea ferruginea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128: 225-230.
Hudson,
G.A., Cheng, L., Yu, J., Yan, Y., Dyer, D.J., McCarroll,
M.E. & Wang, L. 2010. Computational studies on response and binding
selectivity of fluorescence sensors. J. Phys. Chem. B 114(2): 870-876.
Jensen,
F. 2010. An atomic counterpoise method for estimating inter- and intramolecular
basis set superposition errors. Journal of Chemical Theory and Computation 6(1): 100-106.
Kadir, M.A., Abdul Razak,
F.I. & Haris, N.S.H. 2020. Experimental and DFT
data of p-Chlorocalix[4]arene as drugs receptor. Data in Brief 32: 106263.
Siti Shafura, A.Karim, Chang-Fu Dee, Burhanuddin Yeop Majlis & Mohd Ambri Mohamed. 2019. Recent progress on fabrication of zinc
oxide nanorod-based field effect transistor
biosensors. Sains Malaysiana 48(6): 1301-1310.
Kaur, H., Chhibber, M. & Mittal, S. 2017. Acyclic arylamine-based ionophores as
potentiometric sensors for Zn2+ and Ni2+ ions. Journal
of Carbon Research 3(4): 34.
Kerru, N., Gummidi,
L., Bhaskaruni, S.V.H.S., Maddila,
S.N., Singh, P. & Jonnalagadda, S.B. 2019. A
comparison between observed and DFT calculations on structure of
5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Scientific Reports 9(1):
1-17.
Khairul, Wan M., Mohd Faizuddin Abu Hasan, Adibah Izzati Daud, Hafiza Mohamed Zuki, Ku Halim Ku Bulat & Maisara Abdul Kadir. 2016. Theoretical and experimental investigation of pyridyl-thiourea derivatives as ionophores for Cu (II) ion detection. Malaysian Journal of Analytical Sciences 20(1): 73-84.
Li, Q.F.,
Wang, J.T., Wu, S., Ge, G.W., Huang, J., Wang, Z., Yang, P. & Lin, J. 2018.
A water-soluble fluorescent chemosensor having a high
affinity and sensitivity for Zn2+ and its biological application. Sensors
and Actuators, B: Chemical 259: 484-491.
Lopes,
J.F., Rocha, W.R., dos Santos, H.F. & de Almeida. W.B. 2010. An
investigation of the BSSE effect on the evaluation of ab initio interaction energies for cisplatin-water complexes. Journal
of the Brazilian Chemical Society 21(5): 887-896.
Ma, Q.J.,
Zhang, X.B., Han, Z.X., Huang, B., Jiang, Q., Shen, G.L. & Yu, R.Q. 2011. A ratiometric fluorescent probe for zinc ions based on
the quinoline fluorophore. International Journal
of Environmental Analytical Chemistry 91(1): 74-86.
Mancin, F. & Tecilla,
P. 2007. Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: From model substrates to nucleic acids. New
Journal of Chemistry 31(6): 800-817.
Mehdi,
H., Gong, W., Guo, H., Watkinson, M., Ma, H., Wajahat, A. & Ning, G. 2017. Aggregation-Induced
emission (AIE) fluorophore exhibits a highly ratiometric fluorescent response to Zn2+ in
vitro and in human liver cancer cells. Chemistry - A European Journal 23(53): 13067-13075.
Mohamad,
N.S., Zakaria, N.H., Daud,
N., Tan, L.L., Goh, C.T., Lee, Y.H. & Hassan, N.I. 2021. The role of
8-amidoquinoline derivatives as fluorescent probes for zinc ion determination. Sensors 21(1): 311.
Mortier, K.A., Zhang, G.F., van Peteghem, C.H. & Lambert, W.E. 2004. Adduct formation
in quantitative bioanalysis: Effect of ionization conditions on paclitaxel. Journal
of the American Society for Mass Spectrometry 15(4): 585-592.
Nandiyanto, A.B.D., Oktiani,
R. & Ragadhita, R. 2019. How to read and
interpret FTIR spectroscope of organic material. Indonesian Journal of
Science and Technology 4(1): 97-118.
Nitsche, C. & Otting,
G. 2018. NMR studies of ligand binding. Current Opinion in Structural
Biology 48: 16-22.
Oturak, H., Kaya Kinaytürk,
N. & Sahin, G. 2015. Structure and vibrational
studies of ±1-(1H-benzoimidazol-2-YL) ethanol, using DFT method. Acta Physica Polonica A 128(2): 417-421.
Ozel, A.E., Celik,
S. & Akyuz, S. 2009. Vibrational spectroscopic
investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT
studies. Journal of Molecular Structure 924-926: 523-530.
Park,
G.J., Kim, H., Lee, J.J., Kim, Y.S., Lee, S.Y., Lee, S., Noh, I. & Kim, C.
2015. A highly selective turn-on chemosensor capable
of monitoring Zn2+ concentrations in living cells and aqueous
solution. Sensors and Actuators, B: Chemical 215: 568-576.
Petyunin, G.P. & Sysun,
V.N. 1974. Preparation of aminoacridine salts. Pharmaceutical
Chemistry Journal 9(7): 444-447.
Ponnuvel, K. & Padmini,
V. 2016. Turn-on fluorescence chemosensor for fluoride
ions and its applicability in imaging of living cells. Journal of
Luminescence 169: 289-294.
Prabavathi, N., Nilufer,
A. & Krishnakumar, V. 2014. FT-IR, FT-Raman and
DFT quantum chemical study on the molecular conformation, vibrational and electronic
transitions of 1-(m-(Trifluoromethyl)phenyl) piperazine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 121: 483-493.
Sahudin, M.A., Su’ait,
M.S., Tan, L.L., Lee, Y.H. & Abd Karim. N.H.
2019. Zinc (II) salphen complex-based fluorescence
optical sensor for biogenic amine detection. Analytical and Bioanalytical
Chemistry 411(24): 6449-6461.
Salim,
A.S., Girgis, A.S., Basta,
A.H., El-Saied, H., Mohamed, M.A. & Bedair, A.H.
2018. Comparative DFT computational studies with experimental investigations
for novel synthesized fluorescent pyrazoline derivatives. Journal of Fluorescence 28(4): 913-931.
Sethupathi, M., Jayamani,
A., Muthusankar, G., Sakthivel,
P., Sekar, K., Gandhi, S., Sengottuvelan,
N., Gopu, G. & Selvaraju,
C. 2020. Colorimetric and fluorescence sensing of Zn2+ ion and its
bio-imaging applications based on macrocyclic “tet a”
derivative. Journal of Photochemistry and Photobiology B: Biology 207:
111854.
Shamsipur, M., Yousefi,
M., Hosseini, M., Ganjali, M.R., Sharghi,
H. & Naeimi, H. 2001. A Schiff base complex of Zn
(II) as a neutral carrier for highly selective PVC membrane sensors for the
sulfate ion. Analytical Chemistry 73(13): 2869-2874.
Shi, D.,
Zhou, X. & Zheng, T. 2014. Recognition and fluorescent sensing of zinc ions
using organic fluorophores-based sensor molecules. Journal of the Iranian
Chemical Society 12(2): 293-308.
Shyamal, M., Mazumdar,
P., Maity, S., Samanta, S., Sahoo, G.P. & Misra, A.
2016. Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn (II) based on
aggregation induced emission enhancement feature. ACS Sensors 1(6):
739-747.
Song, H.
& Zhang, Z. 2019. A quinoline-based ratiometric fluorescent probe for discriminative detection
of Zn 2+ and Cd 2+ with different binding modes, and its
Zn 2+ complex for relay sensing of pyrophosphate and adenosine
triphosphate. Dyes and Pigments 165: 172-181.
Szabó, L., Chiş,
V., Pîrnǎu, A., Leopold, N., Cozar,
O. & Orosz, Sz. 2009.
Spectroscopic and theoretical study of amlodipine besylate. Journal of Molecular Structure 924: 385-392.
Tharmaraj, V. & Pitchumani,
K. 2013. A highly selective ratiometric fluorescent chemosensor for Cu(II) based on dansyl-functionalized
thiol stabilized silver nanoparticles. Journal of Materials Chemistry B 1(14): 1962-1967.
Tian, X., Guo, X., Yu, F. & Jia,
L. 2016. An oxalamidoquinoline-based fluorescent
sensor for selective detection of Zn2+ in solution and living cells and its
logic gate behavior. Sensors and Actuators, B: Chemical 232: 181-187.
Urano, Y., Kamiya,
M., Kanda, K., Ueno, T., Hirose, K. & Nagano, T. 2005. Evolution of
fluorescein as a platform for finely tunable fluorescence probes. Journal of
the American Chemical Society 127(13): 4888-4894.
Williams,
D. & Fleming, I. 2007. Spectroscopic Methods in Organic Chemistry.
6th ed. London: McGraw-Hill Education.
Ying,
K.S., Awang Ngah, F.A., Sapari, S., Lee, Y.H. & Hasbullah,
S.A. 2019. Complexation study of bis-thiourea compound with aluminium ion as ionophore for development of potentiometric ion sensor. Sains Malaysiana 48(12): 2649-2661.
You,
Q.H., Chan, P.S., Chan, W.H., Hau, S.C.K., Lee,
A.W.M., Mak, N.K., Mak,
T.C.W. & Wong, R.N.S. 2012. A quinolinyl antipyrine based fluorescence sensor for Zn2+ and its application in bioimaging. RSC Advances 2(29): 11078-11083.
Yue, Y.,
Dong, Q., Zhang, Y., Sun, Y. & Gong, Y. 2015. A highly selective 'turn-on'
fluorescent chemosensor based on 8-aminoquinoline for
detection of Zn2+. Analytical Methods 7(13): 5661-5666.
Zhang,
Y., Guo, X., Si, W., Jia,
L. & Qian, X. 2008. Ratiometric and water-soluble
fluorescent zinc sensor of carboxamidoquinoline with
an alkoxyethylamino chain as receptor. Organic
Letters 10(3): 473-476.
*Corresponding author; email: drizz@ukm.edu.my
|