Sains Malaysiana 51(12)(2022): 3949-3966

http://doi.org/10.17576/jsm-2022-5112-07

 

A Quinoline-Based Fluorescent Labelling for Zinc Detection and DFT Calculations

(Pelabelan Pendarfluor Berasaskan Kuinolina untuk Pengesanan Zink dan Pengiraan DFT)

 

NUR SYAMIMI MOHAMAD1, LING LING TAN1, GOH CHOO TA1, LEE YOOK HENG2, NADHRATUN NAIIM MOBARAK2, AZWAN MAT LAZIM2, SUHAILA SAPARI3, FAZIRA ILYANA ABDUL RAZAK3 & NURUL IZZATY HASSAN2,*

1Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81300 Skudai, Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 8 June 2022/Accepted: 1 September 2022

 

Abstract

8-carboxamidoquinoline derivatives were gradually investigated as zinc's label in resolving weak water solubility, poor membrane permeability, and difficulty measuring free Zn2+ ion in cells quantitatively. The potential of 2-oxo-2-(quinolin-8-ylamino)acid (OQAA) as zinc's label was prepared and characterized spectroscopically. Theoretical and experimental data of OQAA were compared and discussed. The optimized molecular structure, molecular orbital of HOMO-LUMO, energy band gaps, and molecular electrostatic potential (MEP) of OQAA were carried out using the DFT method with Becke-3-Parameter-Lee-Yang-Parr (B3LYP) and 6-31G(d,p) basis set. The intermolecular interaction energy of OQAA-Zn is calculated by using the hybrid method of GEN with a basis set of LANL2DZ for Zn2+ ion and DFT/6-31G(d,p) for OQAA ligand. OQAA exhibited remarkable and excellent fluorescence enhancement selective and qualitatively only for Zn2+ than other metal cations tested (Fe2+, Cu2+, Co2+, Ni2+, Hg2+, Cd2+) under a long wavelength. Job's plot and 1H NMR titrations indicate OQAA-Zn2+ has a binding ratio at 1:1 stoichiometry (M1L1). Substantial shifting of amide N-H proton to higher chemical shift and intensity of the proton peak of N-H amide decrease abruptly implies that Zn2+ is binding to an amide. These changes confirmed interactions among the ligand OQAA and metal Zn2+ ion. As a result of the benefits discussed, OQAA could effectively and selectively optimize and fabricate for Zn2+ sensors.

Keywords: Density functional theory; fluorescent sensor; metal cation; zinc label; 8-carboxamidoquinoline

 

Abstrak

Bahan terbitan 8-karboksamidokuinolina semakin mendapat perhatian sebagai label zink dalam menyelesaikan masalah keterlarutan air yang lemah, kebolehtelapan membran yang lemah, dan kesukaran mengukur ion Zn2+ bebas dalam sel secara kuantitatif. Sebatian asid 2-okso-2-(kuinolina-8-ylamino) (OQAA) yang berpotensi sebagai label zink telah disintesiskan dan dicirikan secara spektroskopi. Data teori dan uji kaji OQAA dibandingkan dan dibincangkan. Struktur molekul yang dioptimumkan, orbital molekul HOMO-LUMO, jurang jalur tenaga dan potensi elektrostatik molekul (MEP) OQAA telah dijalankan menggunakan kaedah DFT dengan Becke-3-Parameter-Lee-Yang-Parr (B3LYP) dan set asas 6-31G(d,p). Seterusnya, tenaga interaksi antara molekul OQAA-Zn dihitung menggunakan kaedah hibrid GEN dengan set asas LANL2DZ untuk ion Zn2+ dan DFT/6-31G(d,p) untuk ligan OQAA. OQAA menunjukkan peningkatan pendarfluor yang luar biasa dan cemerlang secara selektif dan kualitatif hanya untuk Zn2+ berbanding kation logam lain yang diuji (Fe2+, Cu2+, Co2+, Ni2+, Hg2+, Cd2+) di bawah lampu UV gelombang panjang. Plot Job dan titrasi 1H NMR menunjukkan OQAA-Zn2+ mempunyai nisbah pengikatan pada stoikiometri 1:1 (M1L1). Peralihan besar amida N-H proton kepada anjakan kimia yang lebih tinggi dan keamatan puncak proton amida N-H menurun secara mendadak memberi gambaran bahawa Zn2+ terikat pada amida. Perubahan ini mengesahkan terdapat interaksi antara ligan OQAA dan ion logam Zn2+. Kesimpulannya, hasil kajian yang dibincangkan ini membuktikan sebatian OQAA ini boleh dilanjutkan dengan pengoptimuman dan fabrikasi sensor Zn2+ yang berkesan dan selektif. 

Kata kunci: Kation logam; label zink; sensor pendarfluor; 8-karboksamidokuinolina; teori kefungsian ketumpatan

 

REFERENCES

Al-Khalqi, E.M., Hamid, M.A.A., Shamsudin, R., Al-Hardan, N.H., Jalar, A. & Keng, L.K. 2021. Zinc oxide nanorod electrolyte-insulator- Semiconductor sensor for enhanced 2-Methoxyethanol selectivity. IEEE Sensors Journal 21(5): 6234-6240.

Atalay, Y.B., Di Toro, D.M. & Carbonaro, R.F. 2013. Estimation of stability constants for metal-ligand complexes containing neutral nitrogen donor atoms with applications to natural organic matter. Geochimica et Cosmochimica Acta 122: 464-477.

Awual, M.R., Kobayashi, T., Miyazaki, Y., Motokawa, R., Shiwaku, H., Suzuki, S., Okamoto, Y. & Yaita, T. 2013. Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-Methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent. Journal of Hazardous Materials 252-253: 313-320.

Bányai, I. 2018. Dynamic NMR for coordination chemistry. The Royal Society of Chemistry 42: 7569-7581.

Basabe-Desmonts, L., Müller, T.J.J. & Crego-Calama, M. 2007. Design of fluorescent materials for chemical sensing. Chemical Society Reviews 36(6): 993-1017.

Bozym, R.A., Thompson, R.B. & Fierke, C.A. 2006. Importance of measuring free zinc in cells. In Reviews in Fluorescence 2006, edited by Geddes, C.D. & Lakowicz, J.R. Boston: Springer. pp. 399-419.

Bukheet Hassan, H. 2014. Density function theory B3LYP/6-31G**calculation of geometry optimization and energies of donor-bridge-acceptor molecular system. Research Article International Journal of Current Engineering and Technology 4(4): 2342-2345.

Chandrakumar, K.R.S. & Pal, S. 2002. A systematic study on the reactivity of Lewis acid-base complexes through the local hard-soft acid-base principle. Journal of Physical Chemistry A 106(48): 11775-11781.

Chen, Y., Han, K.Y. & Liu, Y. 2007. Effective switch-on fluorescence sensing of zinc (II) ion by 8-Aminoquinolino-β-Cyclodextrin/Adamantaneacetic acid system in water. Bioorganic and Medicinal Chemistry 15(13): 4537-4542.

Czaplinska, B., Spaczynska, E. & Musiol, R. 2018. Quinoline fluorescent probes for zinc - from diagnostic to therapeutic molecules in treating neurodegenerative diseases. Medicinal Chemistry 14(1): 19-33.

Dong, Y., Fan, R., Chen, W., Wang, P. & Yang, Y. 2017. A simple quinolone schiff-base containing CHEF based fluorescence' turn-on' chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility. Dalton Transactions 46(20): 6769-6775.

Dong, Z., Le, X., Zhou, P., Dong, C. & Ma, J. 2014. An 'off-on-off' fluorescent probe for the sequential detection of Zn2+ and hydrogen sulfide in aqueous solution. New Journal of Chemistry 38(4): 1802-1808.

Fu, H., Liu, H., Zhao, L., Xiao, B., Fan, T. & Jiang, Y. 2019. A quinoline-based selective 'turn on' chemosensor for zinc (II) via Quad-core complex, and its application in live cell imaging. Tetrahedron 75(49): 130710.

Galano, A. & Alvarez-Idaboy, J.R. 2006. A new approach to counterpoise correction to BSSE. Journal of Computational Chemistry 27(11): 1203-1210.

Gupta, V.K., Jain, A.K. & Maheshwari, G. 2006. A new Zn2+-selective potentiometric sensor based on dithizone - PVC membrane. Chemia Analityczna 51(6): 889-898.

Hashmi, M.A., Khan, A., Ayub, K. & Farooq, U. 2014. Spectroscopic and density functional theory studies of 5, 7, 3’, 5’-Tetrahydroxyflavanone from the leaves of Olea ferruginea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128: 225-230.

Hudson, G.A., Cheng, L., Yu, J., Yan, Y., Dyer, D.J., McCarroll, M.E. & Wang, L. 2010. Computational studies on response and binding selectivity of fluorescence sensors. J. Phys. Chem. B 114(2): 870-876.

Jensen, F. 2010. An atomic counterpoise method for estimating inter- and intramolecular basis set superposition errors. Journal of Chemical Theory and Computation 6(1): 100-106.

Kadir, M.A., Abdul Razak, F.I. & Haris, N.S.H. 2020. Experimental and DFT data of p-Chlorocalix[4]arene as drugs receptor. Data in Brief 32: 106263.

Siti Shafura, A.Karim, Chang-Fu Dee, Burhanuddin Yeop Majlis & Mohd Ambri Mohamed. 2019. Recent progress on fabrication of zinc oxide nanorod-based field effect transistor biosensors. Sains Malaysiana 48(6): 1301-1310.

Kaur, H., Chhibber, M. & Mittal, S. 2017. Acyclic arylamine-based ionophores as potentiometric sensors for Zn2+ and Ni2+ ions. Journal of Carbon Research 3(4): 34.

Kerru, N., Gummidi, L., Bhaskaruni, S.V.H.S., Maddila, S.N., Singh, P. & Jonnalagadda, S.B. 2019. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Scientific Reports 9(1): 1-17.

Khairul, Wan M., Mohd Faizuddin Abu Hasan, Adibah Izzati Daud, Hafiza Mohamed Zuki, Ku Halim Ku Bulat & Maisara Abdul Kadir. 2016. Theoretical and experimental investigation of pyridyl-thiourea derivatives as ionophores for Cu (II) ion detection. Malaysian Journal of Analytical Sciences 20(1): 73-84.

Li, Q.F., Wang, J.T., Wu, S., Ge, G.W., Huang, J., Wang, Z., Yang, P. & Lin, J. 2018. A water-soluble fluorescent chemosensor having a high affinity and sensitivity for Zn2+ and its biological application. Sensors and Actuators, B: Chemical 259: 484-491.

Lopes, J.F., Rocha, W.R., dos Santos, H.F. & de Almeida. W.B. 2010. An investigation of the BSSE effect on the evaluation of ab initio interaction energies for cisplatin-water complexes. Journal of the Brazilian Chemical Society 21(5): 887-896.

Ma, Q.J., Zhang, X.B., Han, Z.X., Huang, B., Jiang, Q., Shen, G.L. & Yu, R.Q. 2011. A ratiometric fluorescent probe for zinc ions based on the quinoline fluorophore. International Journal of Environmental Analytical Chemistry 91(1): 74-86.

Mancin, F. & Tecilla, P. 2007. Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: From model substrates to nucleic acids. New Journal of Chemistry 31(6): 800-817.

Mehdi, H., Gong, W., Guo, H., Watkinson, M., Ma, H., Wajahat, A. & Ning, G. 2017. Aggregation-Induced emission (AIE) fluorophore exhibits a highly ratiometric fluorescent response to Zn2+ in vitro and in human liver cancer cells. Chemistry - A European Journal 23(53): 13067-13075.

Mohamad, N.S., Zakaria, N.H., Daud, N., Tan, L.L., Goh, C.T., Lee, Y.H. & Hassan, N.I. 2021. The role of 8-amidoquinoline derivatives as fluorescent probes for zinc ion determination. Sensors 21(1): 311.

Mortier, K.A., Zhang, G.F., van Peteghem, C.H. & Lambert, W.E. 2004. Adduct formation in quantitative bioanalysis: Effect of ionization conditions on paclitaxel. Journal of the American Society for Mass Spectrometry 15(4): 585-592.

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1): 97-118.

Nitsche, C. & Otting, G. 2018. NMR studies of ligand binding. Current Opinion in Structural Biology 48: 16-22.

Oturak, H., Kaya Kinaytürk, N. & Sahin, G. 2015. Structure and vibrational studies of ±1-(1H-benzoimidazol-2-YL) ethanol, using DFT method. Acta Physica Polonica A 128(2): 417-421.

Ozel, A.E., Celik, S. & Akyuz, S. 2009. Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies. Journal of Molecular Structure 924-926: 523-530.

Park, G.J., Kim, H., Lee, J.J., Kim, Y.S., Lee, S.Y., Lee, S., Noh, I. & Kim, C. 2015. A highly selective turn-on chemosensor capable of monitoring Zn2+ concentrations in living cells and aqueous solution. Sensors and Actuators, B: Chemical 215: 568-576.

Petyunin, G.P. & Sysun, V.N. 1974. Preparation of aminoacridine salts. Pharmaceutical Chemistry Journal 9(7): 444-447.

Ponnuvel, K. & Padmini, V. 2016. Turn-on fluorescence chemosensor for fluoride ions and its applicability in imaging of living cells. Journal of Luminescence 169: 289-294.

Prabavathi, N., Nilufer, A. & Krishnakumar, V. 2014. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(Trifluoromethyl)phenyl) piperazine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 121: 483-493.

Sahudin, M.A., Su’ait, M.S., Tan, L.L., Lee, Y.H. & Abd Karim. N.H. 2019. Zinc (II) salphen complex-based fluorescence optical sensor for biogenic amine detection. Analytical and Bioanalytical Chemistry 411(24): 6449-6461.

Salim, A.S., Girgis, A.S., Basta, A.H., El-Saied, H., Mohamed, M.A. & Bedair, A.H. 2018. Comparative DFT computational studies with experimental investigations for novel synthesized fluorescent pyrazoline derivatives. Journal of Fluorescence 28(4): 913-931.

Sethupathi, M., Jayamani, A., Muthusankar, G., Sakthivel, P., Sekar, K., Gandhi, S., Sengottuvelan, N., Gopu, G. & Selvaraju, C. 2020. Colorimetric and fluorescence sensing of Zn2+ ion and its bio-imaging applications based on macrocyclic “tet a” derivative. Journal of Photochemistry and Photobiology B: Biology 207: 111854.

Shamsipur, M., Yousefi, M., Hosseini, M., Ganjali, M.R., Sharghi, H. & Naeimi, H. 2001. A Schiff base complex of Zn (II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Analytical Chemistry 73(13): 2869-2874.

Shi, D., Zhou, X. & Zheng, T. 2014. Recognition and fluorescent sensing of zinc ions using organic fluorophores-based sensor molecules. Journal of the Iranian Chemical Society 12(2): 293-308.

Shyamal, M., Mazumdar, P., Maity, S., Samanta, S., Sahoo, G.P. & Misra, A. 2016. Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn (II) based on aggregation induced emission enhancement feature. ACS Sensors 1(6): 739-747.

Song, H. & Zhang, Z. 2019. A quinoline-based ratiometric fluorescent probe for discriminative detection of Zn 2+ and Cd 2+ with different binding modes, and its Zn 2+ complex for relay sensing of pyrophosphate and adenosine triphosphate. Dyes and Pigments 165: 172-181.

Szabó, L., Chiş, V., Pîrnǎu, A., Leopold, N., Cozar, O. & Orosz, Sz. 2009. Spectroscopic and theoretical study of amlodipine besylate. Journal of Molecular Structure 924: 385-392.

Tharmaraj, V. & Pitchumani, K. 2013. A highly selective ratiometric fluorescent chemosensor for Cu(II) based on dansyl-functionalized thiol stabilized silver nanoparticles. Journal of Materials Chemistry B 1(14): 1962-1967.

Tian, X., Guo, X., Yu, F. & Jia, L. 2016. An oxalamidoquinoline-based fluorescent sensor for selective detection of Zn2+ in solution and living cells and its logic gate behavior. Sensors and Actuators, B: Chemical 232: 181-187.

Urano, Y., Kamiya, M., Kanda, K., Ueno, T., Hirose, K. & Nagano, T. 2005. Evolution of fluorescein as a platform for finely tunable fluorescence probes. Journal of the American Chemical Society 127(13): 4888-4894.

Williams, D. & Fleming, I. 2007. Spectroscopic Methods in Organic Chemistry. 6th ed. London: McGraw-Hill Education.

Ying, K.S., Awang Ngah, F.A., Sapari, S., Lee, Y.H. & Hasbullah, S.A. 2019. Complexation study of bis-thiourea compound with aluminium ion as ionophore for development of potentiometric ion sensor. Sains Malaysiana 48(12): 2649-2661.

You, Q.H., Chan, P.S., Chan, W.H., Hau, S.C.K., Lee, A.W.M., Mak, N.K., Mak, T.C.W. & Wong, R.N.S. 2012. A quinolinyl antipyrine based fluorescence sensor for Zn2+ and its application in bioimaging. RSC Advances 2(29): 11078-11083.

Yue, Y., Dong, Q., Zhang, Y., Sun, Y. & Gong, Y. 2015. A highly selective 'turn-on' fluorescent chemosensor based on 8-aminoquinoline for detection of Zn2+. Analytical Methods 7(13): 5661-5666.

Zhang, Y., Guo, X., Si, W., Jia, L. & Qian, X. 2008. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Organic Letters 10(3): 473-476.

 

*Corresponding author; email: drizz@ukm.edu.my

 

 

 

 

 

previous