Sains Malaysiana 51(12)(2022):
3981-3993
http://doi.org/10.17576/jsm-2022-5112-09
Polycyclic Aromatic Hydrocarbons (PAHs)
Levels and Toxicity in Herbal Teas Marketed in Malaysia using QuEChERS and GC-FID
(Tahap dan Ketoksikan Hidrokarbon Polisiklik Aromatik (PAH)dalam Teh Herba di Pasaran Malaysia menggunakan QuEChERS dan GC-FID)
AZRINA
AZIZ1, KHAIRIAH ABD KARIM1,*,
MOHD AZMIER AHMAD1 & MOHAMAD JEMAIN MOHAMAD RIDHWAN2
1School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
Received: 25 January 2022/Accepted:
2 August 2022
Abstract
In
line with the growing health trend in Malaysia, more consumers drink herbal tea
for medicinal benefits. However, herbal tea products
could be contaminated with polycyclic aromatic hydrocarbons (PAHs) from various
production sources. There is a little study focused on the detection of PAHs in
herbal tea species distributed in Malaysia. This
study was performed to investigate PAHs content
and toxicity in selected commercial herbal teas in Malaysia. A total of seven
different Malaysian herbal tea samples were extracted using QuEChERS extraction method and the contamination level of PAHs were evaluated using gas
chromatography (GC) with a flame ionization detector (FID). The total content
of 10 PAHs (∑10PAHs) in the herbal tea samples ranged from 2.53
to 9.39 µg/kg. Acenaphthene, fluorene, phenanthrene and anthracene were the most abundant
compounds with 53% contribution of all PAHs content. All tested herbal
teas species showed low toxic equivalency (TEQ) values ranging from 0.0027 to
0.1148. The least contaminated samples were Strobilanthes crispus, Senna alata, Orthosiphon aristatus, Clinacanthus nutans, and Stevia rebaudiana.
Keywords:
Gas chromatography - flame ionization detector; herbal tea; polycyclic aromatic
hydrocarbons; QuEChERS; toxic equivalency; toxic
equivalent factors
Abstrak
Seiring dengan perkembangan amalan kesihatan yang semakin meningkat di Malaysia, lebih ramai pengguna meminum teh herba untuk manfaat perubatan. Walau bagaimanapun, produk teh herba boleh tercemar dengan hidrokarbon polisiklik aromatik (PAH) daripada pelbagai sumber. Kajian yang memfokuskan pada pengesanan PAHs dalam spesies teh herba yang diedarkan di Malaysia adalah sedikit. Penyelidikan ini dijalankan untuk mengkaji kandungan PAH dan ketoksikannya dalam teh herba komersial terpilih di Malaysia. Sebanyak tujuh sampel teh herba Malaysia yang berbeza telah diekstrak menggunakan kaedah pengekstrakan QuEChERS dan tahap pencemaran PAH telah dinilai menggunakan kromatografi gas (GC) dengan pengesan pengionan nyalaan (FID). Jumlah kandungan 10 PAH
(∑10PAH) dalam sampel teh herba ialah antara 2.53 hingga 9.39 µg/kg. Asenaftena, fluorena, fenantrena dan antracena adalah sebatian yang paling banyak dengan sumbangan 53% daripada semua kandungan PAH. Semua spesies teh herba yang diuji menunjukkan nilai kesetaraan toksik (TEQ) yang rendah antara 0.0027 hingga 0.1148. Sampel yang paling kurang tercemar ialah Strobilanthes crispus (pecah beling), Senna alata (gelenggang), Orthosiphon aristatus (misai kucing), Clinacanthus nutans (belalai gajah) dan Stevia rebaudiana (stevia).
Kata kunci: Faktor kesetaraan toksik; hidrokarbon polisiklik aromatik; kesetaraan toksik; kromatografi gas - pengesan pengionan nyalaan; QuEChERS; teh herba
REFERENCES
Abdel-Shafy, H.I. & Mansour, M.S.M. 2016. A review on
polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human
health and remediation. Egyptian Journal of Petroleum 25(1): 107-123.
Adisa, A., Jimenez, A., Woodham, C., Anthony, K., Nguyen, T. & Saleh, M.A.
2015. Determination of polycyclic aromatic hydrocarbons in dry tea. Journal
of Environmental Science and Health - Part B Pesticides, Food Contaminants, and
Agricultural Wastes 50(8): 552-559.
Anastassiades, M., Lehotay,
S.J., Štajnbaher, D. & Schenck,
F.J. 2003. Fast and easy multiresidue method
employing acetonitrile extraction/partitioning and “dispersive solid-phase
extraction” for the determination of pesticide residues in produce. Journal
of AOAC International 86(2): 412-431.
Bauer,
A.K., Siegrist, K.J., Wolff, M., Nield,
L., Brüning, T., Upham, B.L., Käfferlein,
H.U. & Plöttner, S. 2022. The carcinogenic
properties of overlooked yet prevalent polycyclic aromatic hydrocarbons in human
lung epithelial cells. Toxics 10(1): 28.
Cacho, J.I., Campillo,
N., Viñas, P. & Hernández-Córdoba, M. 2014. Use
of headspace sorptive extraction coupled to gas
chromatography-mass spectrometry for the analysis of volatile polycyclic
aromatic hydrocarbons in herbal infusions. Journal of Chromatography A 1356: 38-44.
Ciemniak, A., Kuźmicz,
K., Rajkowska-Myśliwiec, M. & Cadena, M.F.
2019. Assessing the contamination levels of dried teas and their infusions by
polycyclic aromatic hydrocarbons (PAHs). Journal Fur Verbraucherschutz Und Lebensmittelsicherheit 14(3): 263-274.
Commission,
T.E. 2015. Commission Regulation (EU) No. 2015/1933 of 27 October 2015 amending
Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic
hydrocarbons in cocoa fibre, banana chips, food
supplements, dried herbs and dried spices. Official Journal of the European
Union 58(1881): 11-14.
Deng, W.,
Huang, A., Zheng, Q., Yu, L., Li, X., Hu, H. & Xiao, Y. 2021. A
density-tunable liquid-phase microextraction system
based on deep eutectic solvents for the determination of polycyclic aromatic
hydrocarbons in tea, medicinal herbs and liquid foods. Food Chemistry 352: 129331.
Fadzelly, A.B.M., Asmah,
R. & Fauziah, O. 2006. Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods
for Human Nutrition 61(1): 7-12.
Fred-Ahmadu, O.H. & Benson, N.U. 2019. Polycyclic aromatic
hydrocarbons (PAHs) occurrence and toxicity in Camellia sinensis and herbal tea. Polycyclic Aromatic Compounds 39(4): 383-393.
Hamidi, E.N., Hajeb,
P., Selamat, J. & Razis,
A.F.A. 2016. Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: A tool for assessing human cancer
risk. Asian Pacific Journal of Cancer Prevention 17(1): 15-23.
IARC.
2021. Agents classified by the IARC monographs, Volumes 1-132 - IARC
Monographs on the Identification of Carcinogenic Hazards to Humans. World
Health Organization.
Joint,
F.A.O. & WHO Expert Committee on Food Additives. 2006. Evaluation of
certain food contaminants. World Health Organization Technical Report Series 930: 1.
Kasim, N., Osman, R., Saim, N. & Ismail, L. 2012. Determination of Benzo[a]pyrene in Malaysian commercialized coffee powder using
solid phase extraction and gas chromatography. Malaysian Journal of
Analytical Sciences 16(1): 39-42.
Krajian, H. & Odeh,
A. 2013. Polycyclic aromatic hydrocarbons in medicinal plants from Syria. Toxicological
and Environmental Chemistry 95(6): 942-953.
Kuang, H., Zhou, W., Zeng, Y., Xu, D.,
Zhu, W., Lin, S. & Fan, R. 2022. Dose makes poison: Insights into the
neurotoxicity of perinatal and juvenile exposure to environmental doses of 16
priority-controlled PAHs. Chemosphere 298: 134201.
Lee,
J.G., Lim, T., Kim, S.H., Kang, D.H. & Yoon, H.J. 2018. Determination and
risk characterization of polycyclic aromatic hydrocarbons of tea by using the
Margin of Exposure (MOE) approach. Food Science and Biotechnology 27(6):
1843-1856.
Lin, D.
& Zhu, L. 2004. Polycyclic aromatic hydrocarbons: Pollution and source
analysis of a black tea. Journal of Agricultural and Food Chemistry 52(26): 8268-8271.
Lin, D., Tu, Y. & Zhu, L. 2005. Concentrations and health risk
of polycyclic aromatic hydrocarbons in tea. Food and Chemical Toxicology 43(1): 41-48.
Loh, S.H., Mohd,
W., Wan, A. & Khalik, M. 2020. Headspace
membrane-protected liquid phase microextraction of phenanthrene in beverage and water. Malaysian Journal of
Analytical Sciences 24(3): 373-381.
Loh, S.H., Chong, Y.T., Afindi, K.N.N. & Kamaruddin,
N.A. 2016. Determination of polycyclic aromatic hydrocarbons in beverage by low
density solvent based-dispersive liquid-liquid microextraction-high
performance liquid chromatography-fluorescence detection. Sains Malaysiana 45(10): 1453-1459.
Mañana-López, A., Sánchez-Piñero,
J., Moreda-Piñeiro, J., Turnes-Carou,
I., Muniategui-Lorenzo, S. & López-Mahía,
P. 2021. Polycyclic aromatic hydrocarbons analysis in tea infusions and tea
beverages using membrane assisted solvent extraction. Microchemical Journal 167: 106278.
Maria, D.
2020. Assessment of the nutritional value of various teas infusions in terms of
the macro- and trace elements content. Journal of Trace Elements in Medicine
and Biology 59: 126428.
Nanda,
A., Mohapatra, B.B., Mahapatra,
A.P.K., Mahapatra, A.P.K. & Mahapatra,
A.P.K. 2021. Multiple comparison test by Tukey’s honestly significant
difference (HSD): Do the confident level control type I error. International
Journal of Statistics and Applied Mathematics 6(1): 59-65.
Nisbet, I.C.T. & LaGoy,
P.K. 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic
hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16(3): 290-300.
Petrarca, M.H. & Godoy, H.T. 2018. Gas
chromatography-mass spectrometry determination of polycyclic aromatic
hydrocarbons in baby food using QuEChERS combined
with low-density solvent dispersive liquid-liquid microextraction. Food Chemistry 257: 44-52.
Plaza-Bolaños, P., Frenich, A.G. &
Vidal, J.L.M. 2010. Polycyclic aromatic hydrocarbons in food and beverages.
Analytical methods and trends. Journal of Chromatography A 1217(41):
6303-6326.
Ramalhosa, M.J., Paíga,
P., Morais, S., Delerue-Matos,
C. & Oliveira, M.B.P.P. 2009. Analysis of polycyclic aromatic hydrocarbons
in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe
extraction method. Journal of Separation Science 32(20): 3529-3538.
Ramya, M., Manogaran,
S., Joey, K., Keong, T.W. & Katherasan,
S. 2014. Studies on biochemical and medicinal properties of Stevia rebaudiana grown in vitro. International
Journal of Research in Ayurveda and Pharmacy 5(2): 169-174.
Rivera-Vera,
C., Lasarte-Aragonés, G., Bravo, M.A., Muñoz-Lira,
D., Salazar, R. & Toledo-Neira, C. 2019. Ionic
liquids-based dispersive liquid-liquid microextraction for determination of carcinogenic polycyclic aromatic hydrocarbons in tea
beverages: Evaluation of infusion preparation on pollutants release. Food
Control 106: 106685.
Roszko, M., Kaminska,
M., Szymczyk, K. & Jędrzejczak,
R. 2018. Dietary risk evaluation for 28 polycyclic aromatic hydrocarbons (PAHs)
in tea preparations made of teas available on the polish retail market. Journal
of Environmental Science and Health - Part B Pesticides, Food Contaminants, and
Agricultural Wastes 53(1): 25-34.
Ruan, F., Wu, L., Yin, H., Fang, L.,
Tang, C., Huang, S., Fang, L., Zuo, Z., He, C. &
Huang, J. 2021. Long-term exposure to environmental level of phenanthrene causes adaptive immune response and fibrosis
in mouse kidneys. Environmental Pollution 283: 117208.
Sadowska-Rociek, A., Surma,
M. & Cieślik, E. 2014. Comparison of
different modifications on QuEChERS sample
preparation method for PAHs determination in black, green, red and white tea. Environmental
Science and Pollution Research 21(2): 1326-1338.
Tfouni, S.A., Reis, R.M., Kamikata, K., Gomes, F.M., Morgano,
M.A. & Furlani, R.P. 2018. Polycyclic aromatic
hydrocarbons in teas using QuEChERS and HPLC-FLD. Food
Additives & Contaminants: Part B 11(2): 46-152.
Tan, S.T.
& Loh, H.L. 2020. Dispersive liquid-liquid microextraction for the extraction of polycyclic aromatic
hydrocarbons in apple juice. Universiti Malaysia
Terengganu Journal of Undergraduate Research 2(2): 15-21.
Vijayan, C., Murugan,
K., Reji, S. & Nair, G. 2017. Screening biological
activities of Orthosiphon aristatus:
Some observations. International Journal of Advanced Research 5(12): 757-764.
Xu, L.,
Li, K., Xv, L., Zhang, H., Zhang, Y., Liu, X., Xu, Y., Yin, J., Qin, D., Jin, P. & Du, Q. 2021. Preparation of scented teas by
sustained-release of aroma from essential oils–casein nanocomposites. Lebensmittel-Wissenschaft & Technologie 146: 111410.
Yih, B., Nadhirah,
N., Zain, M. & Mohamad, S. 2020. Poly (cyclodextrin-ionic
liquid) based ferro fluid: A new class of magnetic
colloid for dispersive liquid phase microextraction of polycyclic aromatic hydrocarbons from food samples prior to GC-FID analysis. Food Chemistry 314: 126214.
Zachara, A., Gałkowska,
D. & Juszczak, L. 2018. Contamination of tea and
tea infusion with polycyclic aromatic hydrocarbons. International Journal of
Environmental Research and Public Health 15(1): 45.
Zhou, P.,
Zhang, W. & Wang, X. 2021. Development of a syringe membrane-based microextraction method based on metal–organic framework
mixed-matrix membranes for preconcentration/extraction
of polycyclic aromatic hydrocarbons in tea infusion. Food Chemistry 361:
130105.
*Corresponding author; email: chkhairiah@usm.my
|