Sains Malaysiana 51(12)(2022):
4059-4069
http://doi.org/10.17576/jsm-2022-5112-15
Pengoptimuman Lapisan P3HT:PCBM Terdop CuI dalam Sel Suria Organik Jenis Songsang untuk Aplikasi Cahaya Dalam
(Optimization of CuI-Doped P3HT:PCBM Layers in Inverted-Type Organic Solar Cells for Indoor Light Applications)
FARAH LIYANA
KHAIRULAMAN, CHI CHIN YAP*, MOHAMMAD HAFIZUDDIN HJ JUMALI & NOUR
ATALLAH ISSA
Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 7 July
2022/Accepted: 1 September 2022
Abstrak
Dalam kajian ini, kesan kepekatan pendopan CuI dalam lapisan aktif poli
(3-heksilthiofena-2,5-dil) (P3HT): (6,6)-fenil-C61 butrik asid metil ester (PCBM) terhadap prestasi sel suria organik jenis songsang di bawah cahaya luar piawai (AM1.5 G) dan diod pemancar cahaya (LED) putih telah dikaji. Peranti dengan kepekatan pendopan CuI sebanyak 9 bt% memberi prestasi terbaik bagi kedua-dua keadaan pencahayaan dengan kecekapan penukaran kuasa (PCE) yang tertinggi pada
2.46% dan 5.17%, masing-masing di bawah cahaya luar dan dalam. Bagi pengoptimuman lanjut, kesan kepekatan larutan penyediaan lapisan aktif P3HT:PCBM terdop CuI terhadap prestasi sel suria organik telah dikaji. Didapati kepekatan optimum lapisan aktif adalah berbeza di bawah cahaya dalam dan luar. Peranti dengan kepekatan larutan lapisan aktif yang tinggi (50 mg/mL) memberikan prestasi terbaik di bawah cahaya LED dengan PCE 8.14% manakala lapisan aktif dengan kepekatan biasa (25 mg/mL) menunjukkan prestasi terbaik di bawah cahaya AM1.5G (2.46%).
Kata kunci: Aplikasi dalam; kepekatan larutan; kuprum iodida; pendopan; sel suria organik
Abstract
In this study, the effects of CuI doping concentration in poly(3-hexylthiophene) (P3HT): (6,6)-phenyl-C61-butyric
acid methyl ester (PCBM) active layer towards the performance of inverted type
organic solar cell under standard outdoor light (AM1.5 G) and white light
emitting diode (LED) light have been studied. Device with 9 wt% CuI doping concentration gave the best performance
for both illumination conditions with the highest PCE at 2.46% and 5.17%, under
outdoor and indoor light, respectively. For further optimization, the
dependence of the solution concentration of CuI-doped
P3HT:PCBM active layer towards the performance of
organic solar cell has been studied. It was found that the optimum solution
concentration of the active layer is different under indoor and outdoor light.
Device with higher active layer solution concentration (50 mg/mL) gave the best
performance under LED light with PCE of 8.14% while active layer with standard
concentration (25 mg/mL) showed the best performance under AM1.5G light
(2.46%).
Keywords: Copper iodide;
doping; indoor application; organic solar cell; solution concentration
REFERENCES
Bahtiar, A., Tusaddiah,
S.H., Mustikasari, W.P.S., Safriani, L., Kartawidjaja, M., Kanazawa, K.,
Enokida, I., Furukawa, Y. & Watanabe, I. 2015. Optical, structural and
morphological properties of ternary thin film blend of P3HT: PCBM: ZnO
nanoparticles. Materials Science Forum 827: 119-124. Trans Tech Publ.
Beek, W.J.E., Wienk, M.M. & Janssen, R.A.J. 2004.
Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated
polymer. Advanced Materials 16(12): 1009-1013.
Cutting, C.L., Bag, M. & Venkataraman, D. 2016. Indoor
light recycling: A new home for organic photovoltaics. Journal of Materials
Chemistry C 4(43): 10367-10370.
Ferdous, R.M., Reza, A.W. & Siddiqui, M.F. 2016.
Renewable energy harvesting for wireless sensors using passive RFID tag
technology: A review. Renewable and Sustainable Energy Reviews 58:
1114-1128. http://dx.doi.org/10.1016/j.rser.2015.12.332
Khairulaman, F.L., Yap, C.C. & Jumali, M.H.H. 2021.
Improved performance of inverted type organic solar cell using copper
iodide-doped P3HT: PCBM as active layer for low light application. Materials
Letters 283: 128827.
Lakhotiya, G., Belsare, N., Arbuj, S., Kale, B. & Rana,
A. 2019. Enhanced performance of PTB7-Th: PCBM based active layers in ternary
organic solar cells. RSC Advances 9(13): 7457-7463.
Lechêne, B.P., Cowell, M., Pierre, A., Evans, J.W., Wright,
P.K. & Arias, A.C. 2016. Organic solar cells and fully printed
super-capacitors optimized for indoor light energy harvesting. Nano Energy 26: 631-640.
Li, B., Hou, B. & Amaratunga, G.A.J. 2021. Indoor
photovoltaics, the next big trend in solution‐processed solar cells. InfoMat 3(5): 445-459.
Lim, E.L., Yap, C.C., Teridi, M.A.M., Teh, C.H. & Jumali,
M.H.H. 2016. A review of recent plasmonic nanoparticles incorporated P3HT: PCBM
organic thin film solar cells. Organic Electronics 36: 12-28.
Oleiwi, H.F., Zakaria, A., Yap, C.C., Tan, S.T., Lee, H.B.,
Tan, C.H., Ginting, R.T., Alshanableh, A. & Talib, Z.A. 2018. Surface
modification of ZnO nanorods with CdS quantum dots for application in inverted
organic solar cells: Effect of deposition duration. Journal of Materials
Science: Materials in Electronics 29(4): 2601-2609.
Park, S.Y., Li, Y., Kim, J., Lee, T.H., Walker, B., Woo, H.Y.
& Kim, J.Y. 2018. Alkoxybenzothiadiazole-based fullerene and nonfullerene
polymer solar cells with high shunt resistance for indoor photovoltaic
applications. ACS Applied Materials & Interfaces 10(4): 3885-3894.
Salim, E., Bobbara, S.R., Oraby, A. & Nunzi, J.M. 2019.
Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices. Synthetic
Metals 252: 21-28.
Shin, S.C., Koh, C.W., Vincent, P., Goo, J.S., Bae, J.H.,
Lee, J.J., Shin, C., Kim, H., Woo, H.Y. & Shim, J.W. 2019. Ultra-thick
semi-crystalline photoactive donor polymer for efficient indoor organic
photovoltaics. Nano Energy 58(January): 466-475.
Siddiqui, H., Parra, M.R., Pandey, P., Qureshi, M.S. &
Haque, F.Z. 2020. Utility of copper oxide nanoparticles (CuO-NPs) as efficient
electron donor material in bulk-heterojunction solar cells with enhanced power
conversion efficiency. Journal of Science: Advanced Materials and Devices 5(1): 104-110.
Steim, R., Ameri, T., Schilinsky, P., Waldauf, C., Dennler,
G., Scharber, M. & Brabec, C.J. 2011. Organic photovoltaics for low light applications. Solar Energy
Materials and Solar Cells 95(12): 3256-3261. http://dx.doi.org/10.1016/j.solmat.2011.07.011
Sun, B., Snaith, H.J., Dhoot, A.S., Westenhoff, S. &
Greenham, N.C. 2005. Vertically segregated hybrid blends for photovoltaic
devices with improved efficiency. Journal of Applied Physics 97(1):
14914.
Wanninayake, A.P., Gunashekar, S., Li, S., Church, B.C. &
Abu-Zahra, N. 2015. Performance enhancement of polymer solar cells using copper
oxide nanoparticles. Semiconductor Science and Technology 30(6): 64004.
Wu, Z., Zhang, W., Xie, C., Zhang, L., Wang, Y., Zhang, Y.,
Liu, Q., Fu, Y., Li, Y. & Li, J. 2020. Bridging for carriers by embedding metal oxide nanoparticles in
the photoactive layer to enhance performance of polymer solar cells. IEEE
Journal of Photovoltaics 10(5): 1353-1358.
Xu, B., Sai-Anand, G., Unni, G.E., Jeong, H-M., Kim, J-S.,
Kim, S-W., Kwon, J-B., Bae, J-H. & Kang, S-W. 2019. Pyridine-based additive
optimized P3HT: PC61BM nanomorphology for improved performance and stability in
polymer solar cells. Applied Surface Science 484: 825-834.
Yun, T.W. & Sulaiman, K. 2011. Fabrication and
morphological characterization of hybrid polymeric solar cells based on P3HT
and inorganic nanocrystal blends. Sains Malaysiana 40(1): 43-47.
Zhang, H., Cheng, J., Lin, F., He, H., Mao, J., Wong, K.S.,
Jen, A.K.-Y. & Choy, W.C.H. 2016.
Pinhole-free and surface-nanostructured NiO x film by room-temperature solution
process for high-performance flexible perovskite solar cells with good
stability and reproducibility. ACS Nano 10(1): 1503-1511.
*Corresponding author; email: ccyap@ukm.edu.my
|