Sains Malaysiana 51(12)(2022): 4071-4085

http://doi.org/10.17576/jsm-2022-5112-16

 

Developing and Mechanical Properties of Low Fired and Geopolymer Bricks from Drinking Water Sludge with Different Contents of Added Fly Ash

(Pembangunan dan Sifat Mekanik Bata Suhu Rendah dan Geopolimer daripada Enap Cemar Air Minuman dengan Kandungan Berbeza Nilai Tambah Abu Terbang)

 

ZULFAHMI ALI RAHMAN*, AIFAHANA SYAMIMIE MOHD SUHAIMI, WAN MOHD RAZI IDRIS & TUKIMAT LIHAN

 

Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 March 2022/Accepted: 14 August 2022

 

Abstract

Raw water treatment and coal-based power generation facilities produce a high level of waste to the environment annually. A low recycling scheme has worsened the situation and wastes usually end up in a landfill. Further environmental degradation could be prevented by re-utilising wastes for the production of alternative bricks. Additionally, the development of low-fired brick from wastes can comparatively reduce energy consumption during the firing stage. Geopolymer has successfully replaced ordinary portland cement (OPC) without bargaining its mechanical quality. This study aimed to investigate the effect of fly ash (FA) content and geopolymerization on mechanical characteristics of brick developed from drinking water sludge (DWS). A set of brick samples was fired at 500 °C while another set of samples was prepared under a high alkaline condition to produce geopolymer bricks. Resultantly, both sets of samples demonstrated a decrease in linear shrinkage and increased density with more content of FA. For fired brick samples, the water absorption decreased from 38.6% to 33.3% before rising again at 45% of FA content. However, a continuous decrease was displayed by geopolymer brick as FA increased. The compressive strength of fired bricks showed a decreasing trend as FA content increased and vice versa for the geopolymer brick. The compressive strength of geopolymer bricks increased from 1.22 MPa to 3.63 MPa at 45% of FA content. Comparatively, geopolymer bricks demonstrated higher strength than fired bricks. These results reflect the advantage of the incorporated wastes and geopolymerisation in developing alternative brick for sustainable resources and a better environment. 

 

Keywords: Compressive strength; drinking water sludge; fired brick; fly ash; geopolymer

 

Abstrak

Rawatan air mentah dan kemudahan penjanaan kuasa berasaskan arang batu menghasilkan tahap sisa yang tinggi kepada alam sekitar setiap tahun. Skim kitar semula yang rendah telah memburukkan keadaan dan sisa buangan biasanya berakhir di tapak pelupusan sampah. Kemerosotan alam sekitar selanjutnya boleh dicegah dengan menggunakan semula bahan buangan untuk pengeluaran batu bata alternatif. Selain itu, pembangunan bata berapi rendah daripada bahan buangan secara perbandingan boleh mengurangkan penggunaan tenaga semasa peringkat pembakaran. Geopolimer telah berjaya menggantikan simen portland (OPC) biasa tanpa mempertikaikan kualiti mekanikalnya. Penyelidikan ini bertujuan untuk mengkaji kesan kandungan abu terbang (FA) dan geopolimerisasi terhadap ciri mekanikal bata yang dihasilkan daripada enap cemar air minuman (DWS). Satu set sampel bata dibakar pada suhu 500 °C manakala satu set sampel lagi disediakan dalam keadaan beralkali tinggi untuk menghasilkan bata geopolimer. Hasilnya, kedua-dua set sampel menunjukkan penurunan dalam pengecutan linear dan peningkatan ketumpatan dengan lebih banyak kandungan FA. Bagi sampel bata yang dibakar, penyerapan air menurun daripada 38.6% kepada 33.3% sebelum meningkat semula pada 45% kandungan FA. Walau bagaimanapun, penurunan berterusan ditunjukkan oleh bata geopolimer apabila FA meningkat. Kekuatan mampatan batu bata yang dibakar menunjukkan trend menurun apabila kandungan FA meningkat dan begitu juga sebaliknya untuk bata geopolimer. Kekuatan mampatan bata geopolimer meningkat daripada 1.22 MPa kepada 3.63 MPa pada 45% kandungan FA. Secara perbandingan, bata geopolimer menunjukkan kekuatan yang lebih tinggi daripada bata yang dibakar. Keputusan ini mencerminkan kelebihan sisa yang digabungkan dan geopolimerisasi dalam membangunkan bata alternatif untuk sumber yang mampan dan persekitaran yang lebih baik.

 

Kata kunci: Abu terbang; bata bakar; enap cemar air minuman; geopolimer; kekuatan mampatan

 

REFERENCES

Abbas, S., Saleem, M.A., Kazmi, S.M.S. & Munir, M.J. 2017. Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering 14: 7-14. http://dx.doi.org/10.1016/j.jobe.2017.09.008

Abed, M.J. &Abed, H.S. 2019.  Effect of partial replacement of fly ash and expanded polystyrene waste on properties of geopolymer concrete bricks. Journal of Advanced Research in Applied Sciences and Engineering Technology 17(1): 85-102.

Agbede, O.A., Oluokun, G.O., Olayemi, O.K., Jayeioba, K.F. & Oke, A.M. 2016. Impact of firing temperature on compressive strength characteristics of lateritic bricks. International Journal of Latest Research in Engineering and Technology 2(10): 50-55.

Aggarwal, P., Singh, P.R. & Aggarwal, Y. 2015. Use of nano-silica in cement based materials: A review. Cogent Engineering 2(1): 1078018.

Ajam, L., Ouezdou, M.B., Felfoul, H.S. & El Mensi, R. 2009. Characterization of the Tunisian phosphogypsum and its valorization in clay bricks. Construction Building Materials 23: 3240-3247.

Al Bakri, M.M., Mohammed, H., Kamarudin, H., KhairulNiza, I. & Zarina, Y. 2011. Review on fly ash-based geopolymer concrete without portland cement. Journal of Engineering and Technology Research 3: 1-4.

Algamal, Y., Khalil, N.M. & Saleem, Q.M. 2018. Usage of the sludge from water treatment plant in brick-making industry. Journal of Chemical Technology and Metallurgy 53(3): 504-510.

Ali Rahman, Z., Othman, A.M., Idris, W.M.R. & Lihan, T. 2021.  Kesan suhu dan bahan tambah abu terbang terhadap pencirian mekanik bata daripada sisa rawatan air mentah. Sains Malaysiana 50(6): 1563-1575. http://doi.org/10.17576/jsm-2021-5006-05

Ali Rahman, Z., Hamid, N.M., Rahim, S.A., Idris, W.M.R. & Lihan, T. 2016. Pencirian mekanikal bata daripada campuran sisa rawatan air (DWS) dan abu terbang (FA). Proceedings National Geoscience Conference.

Andrew, R.M. 2018. Global CO2 emissions from cement production. Earth System Science Data 10: 195-217.

Anyakora, N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed-Dabo, I.A., Ibrahim, J. & Anto, J.B. 2012. Sustainable technology - based strategy for processing water works sludge for resource utilization. World Journal of Engineering and Pure and Applied Sciences 2(5): 161-168.

Arshad, M.S. & Pawade, P.Y. 2014. Reuse of natural waste material for making light weight bricks. International Journal of Scientific and Technology Research 3(6): 49-53.

Awab, H., Thnanlechumi, P.T. & Mohd Yusoff, A.R. 2012. Chaearcterization of alum sludge for reuse and disposal. Malaysian Journal of Fundamnetal & Applied Sciences 8(4): 251-253.

Aydin, E., Uygar, P.E., Atak, C.E. & Doven, A.G. 2004. The engineering properties of high volume fly ash cement paste. 6th International Congress on Advance in Civil Engineering, Bogazici University, Turkey 6-8 October.

Baricik, H. & Sarier, N. 2014. Comparative study of the characteristics of nano silica, silica fume and fly ash incorporated cement mortar. Materials Research 17(3): 570-582.

Bikkad, G., Sontakke, C., Janwade, B., Giri, G., Kalbhor, V. & Khandelwal, R. 2018. Replacing the fly ash by stp dry sludge in manufacturing of fly ash bricks. International Research Journal of Engineering and Technology 5(6): 24-27.

Bhatt, A., Priyadarshini, S., Mohanakrishnan, A.A., Abri, A., Sattler, M. & Techapaphawit, S. 2019. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials 11: 1-11.

Blaszczyski, T. & Król, M. 2017. Durability of cement and geopolimer composites. IOP Conference Series, Material Science and Engineering p. 251. http://doi.org/10.1088/1757-899X/251/1/012005

British Standard Institution. 1990. Methods of Test for Soils for Civil Engineering Purposes- Part 4: Compaction-Related Tests. London, BS1377.

British Standards Institution. 1985. Specification for Clay Bricks. London, BS 3921.

Breesem, K.M., Faris, F.G. & Abdel-Magid, I.M. 2014. Reuse of alum sludge in construction materials and concrete works: A general overview. Infrastructure University Kuala Lumpur Research Journal 2(1): 20-30.

Chiang, K.Y., Chou, P.H., Chien, K.L., Chen, J.L. & Wu, C.C. 2009. Novel lightweight building bricks manufactured from water treatment plant sludge and agricultural waste. Journal of Residuals Science & Technology 6(4): 185-191.

Choudhary, R., Koppala, S. & Swamiappan, S. 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies 3(2): 173-177.

Department of Environment (DOE). 2013. Schedule Waste Inventory. Malaysia Environmental Inventory Report 2011: 137-149.

Deraman, R., Abdullah, A.H., Negapan, S., Hasmori, M.F., Abas, N.H. & Rahmat, M.H. 2018. Production of low thermal conductivity fired clay brick by using palm kernel ash (PKA) as an additive material. Asian Journal of Technical Vocational Education and Training 4: 9-15.

EN 771-1. 2005. Specification for Masonry Units-Part 1. Clay masonry units.

Eliche-Quesada, D., Felipe-Sese, M.A., Lopez-Perez, J.A. & Infantes-Molina, A. 2017. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceramic International 43(1): 463-475.

Elimbi, A., Tchakoute, H.K. & Njopwouo, D. 2011. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials 25: 2805-2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055

Fungaro, D.A. & da Siva, M.V. 2014. Utilization of water treatment plant sludge and coal fly ash in brick manufacturing. American Journal of Environmental Protection 2(5): 83-88. http://dx.doi.org/10.12691/env-2-5-2

Ganesan, L. 2019. Effects of curing on Class-C fly ash based geopolymer bricks. International Journal of Engineering Research and Management 6(9): 58-61.

Haniegal, A.M., Ramadan, M.A., Naguib, A. & Agwa, I.S. 2020. Study on properties of clay brick incorporating sludge of watertreatment plant and agriculture waste. Case Study in Constructon Materials 13: e00397. https://doi.org/10.1016/j.cscm.2020.e00397

Heidrich, C., Feuerborn, H-J. & Weir, A. 2013. Coal combustion products: A global perspective. World of Coal Ash Conference, Lexington, KY, USA, 22-25 April. p. 17.

Huy, S.H. & Phuoc, H.T. 2017. Effect of fly ash content on engineering properties of unfired building bricks. Journal of Science and Technology 11(4): 32-36.

Joshi, R.C. & Lohita, R. 1997. Fly Ash in Concrete: Production, Properties and Uses. Boca Raton: CRC Press.

Jovanovic, M., Mujkanovic, A., Busatlic, N. & Selimovic, E. 2022. Partial replacement of clay “čavka” with fly ash “stanari” in brick production. Journal of Sustainable Technologies and Materials 2: 20-32.

Karaman, S., Ersahin, S. & Gunal, H. 2006. Firing temperature and firing time influence on mechanical and physical properties of clay bricks. Journal of Scientific & Industrial Research 65: 153-159.

Khater, H.M., Ezzat, M. & El Nagar, A.M. 2016.  Engineering of low cost geopolymer building bricks applied for various construction purposes. International Journal of Civil Engineering and Technology 7(4): 81-99.

Kockal, N.U., Yanuz, E. & Kul Gul, N.I. 2019. Effects of fly ash types on the properties of geopolymer bricks. Proceedings of International 10th Concrete Congress, Bursa, 2-4 May 2019. pp. 251-259.

Kosmatka, S.H., Kerkhoff, B. & Panarese, W.C. 2002. Design and Control of Concrete Mixtures. EB001, 4th ed. Skokie: Portland Cement Assocition.  p. 358.

Koshy, P., Ho, N., Zhong, V., Schrek, L., Koszo, S.A., Severin, E.J. & Sorrell, C.C. 2021. Fly ash utilisation in mullite fabrication: Development of novel percolated mullite. Minerals 11: 84. https://doi.org/10.3390/min11010084

Lavanya, B., Preet, D.K., Suganesh, S., Indrajith, R. & Ramesh, B.C. 2020. Properties of geopolymer bricks made with flyash and GGBS. IOP Conf. Series: Materials Science and Engineering 872: 012141. http://dx.doi:10.1088/1757-899X/872/1/012141

Leiva, C., Areans, C., Alonso-Farina, B., Vilches, L.F., Peceno, B. & Rodriguez-Galan, M. 2016. Characteristics of fired bricks with co-combustion fly ashes. Journal of Building Engineering 5: 114-118. https://doi.org/10.1016/j.jobe.2015.12.001

Ling, I.H. & Teo, D.C.L. 2011. Reuse of waste rice husk ash and expanded polystyrene beads as an alternative raw material in lightweight concrete bricks. International Journal of Chemical and Environmental Engineering 2(5): 328-332.

Madurwar, M.V., Ralegaonkar, R.V. & Mandavgane, S.A. 2012. Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials 38(1): 872-878.

Mageed, A.A., Rizk, S.A. & Abu-Ali, M.H. 2011. Utilization of water treatment plants sludge ash in brick making. Journal of Engineering Sciences 39(1): 195-206.

Mane, S. & Jadha, H.S. 2012. Investigation of geopolymer mortar and concrete under high temperature. International Journal of Emerging and Advanced Engineering 2(12): 384-390.

Michael, T. 2007. Optimizing the use of fly ash in concrete. Civil Engineering Journal pp. 1-24.

More, A., Tarade, A. & Anant, A. 2014. Assessment of suitability of fly ash and rice husk ash burnt clay bricks. Int. J. Sci. Res. Publ. 4(7): 1-6.

Muduli, S.D., Nayak, B.D. & Mishira, B.K. 2014. Geopolymer fly ash building brick by atmospheric curing. International Journal of Chemical Sciences 12(3): 1086-1094.

Muhamad Bashar, N.A., Zubir, Z.H., Ayob, A. & Alias, S. 2016. Water treatment sludge as an alternative liner for landfill site: FTIR and XRD analysis. AIP Conference Proeedings 1774: 030026. https://doi.org/101063/1.4965082

Ngo, S.H. 2020. Evaluation of the engineering properties of fly ash-based geopolymer bricks. International Journal of Civil Engineering and Technology 11(2): 43-51.

O’Kelly, B.C. 2008. Geotechnical properties of a municipal water treatment sludge incorporating a coagulant. Canadian Geotechnical Journal 45(5): 715-725.

Oliveira, E.M.S., Sampaio, V.G. & Holanda, J.N.F. 2006. Evaluation of the suitability of municipal waterworks waste as a raw material for red ceramic brick production.  Industrial Ceramics 26: 23-28.

Pawar, A.S. & Garud, D.NB. 2014. Engineering properties of clay brick with use of fly ash. Intl. Journal of Research in Engineering and Technology 3(9): 75-80.

Oyejobi, D.O., Abdulkadir, T.S. & Ahmed, A.T. 2016. A study of partial replacement of cement with palm oil fuel ash in concrete production. Journal of Agricultural Technology 12(4): 619-631

Ramadan, O.M., Fouad, A.H. & Hassanain, M.A. 2008.  Reuse of water treatment plant sludge in brick manufacturing.  Journal of Applied Sciences Research 4(10): 1223-1229.

Rodriguez, J. 2021. Uses, Benefits and Drawbacks of Fly Ash in Construction - The Pros and Cons of using Fly Ash in Your Concrete (https://www.thebalancesmb.com/fly-ash-applications-844761)

Rodriguez, E.D., Bernal, S.A., Provis, J.L., Jordi, P., Monzo, J.M. & Borrachero, M.V. 2013. Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites 35: 1-11. https://doi.org/10.1016/j.cemconcomp.2012.08.025

Sarabian-Guarin, A., Sanchez-Molina, J. & Bermudez-Carrillo, J.C. 2020. Effect of use residual sludge from water treatment plants as a partial substitute for clay for refractory bricks production. Revista UIS Ingenierias 20(1): 11-22. https://doi.org/10.18273/revuin.v20n1-2021002

Saravanan, G., Jeyasehar, C.A. & Kandasamy, S. 2013. Fly ash based geopolymer concrete-a state of the art review Journal of Engineering Science and Technology Review 6(1): 25-32.

Schneider, H., Schreuer, J. & Hildmann, B. 2008. Structure and properties of mullite-A review. J. Eur. Ceram. Soc. 28: 329-344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017

Srinivasan, K. & Sivakumar, A. 2013. Geopolymer binders: A need for future concrete construction. ISRN Polymer Science 2013: 509185.

Sukmak, P., Horpibulsuk, S., Shen, S.L., Chindaprasirt & Suksiripattanapong, C. 2013. Factor influencing strength development in clay-fly ash geopolymer. Construction of Building Materials 47: 1125-1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104

Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E. & Ozbakkaloglu, T. 2019. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production 233: 753-764. https://doi.org/10.1016/j.jclepro.2019.06.017

Tantawy, M.A. & Mohamed, R.S.A. 2017. Middle Eocene clay from Goset Abu Khashier: Geological assessment and utilization with drinking water treatment sludge in brick manufacture. Applied Clay Science 138: 114-124. http://dx.doi.org/10.1016/j.clay.2017.01.005

Torres, P., Hernández, D. & Paredes, D.  2012. Productive use of sludge from a drinking water treatment plant for manufacturing ceramic bricks. Revista Ingeniería de Construcción 27(3): 145-154. https://doi.org/10.4067/S0718-50732012000300003

Turkel, S. & Aksin, E. 2012. A comparative study on the use of fly ash and phosphogypsum in the brick production. Sadhana 37(5): 595-607.

Ukwata, A. & Mohajerani, A. 2017. Leachate analysis of green and fired-clay bricks incorporated with biosolids. Waste Management 66: 134-144.

Van Jaarsveld, J.G.S., Van Deventer, J.S.J. & Lukey, G.C. 2003. The characterisation of source materials in fly ash- based geopolymers. Materials Letters 57: 1272-1280.

Vista, R.L. 2000. Wollastonite, in Mineral Yearbook, Metals and Minerals 1998. Vol. 1: U.S. Geological Survey, p. 83.1-83.2. https://doi.org/10.3133/mybvI

Wan Ibrahim, W.M., Kamaruddin, H., Khairul Nizar, I. & Mustafa Al Bakri, A.M. 2013. Mechanical performances of fly ash geopolymer bricks. Advanced Science Letters 19(1): 186-189.

Wan Ibrahim, W.M., Mustafa Al Bakri, A.M., Sandu, A.V., Kamaruddin, H., Sandu, I.G., Khairul Nizar, I., Abdul Kadir, A. & Hussain, M. 2014. Processing and characterization of fly ash-based geopolymer bricks. Revista de Cimie 65(11): 1340-1345. https://doi.org/10.37358/Rev.Chim.1949

Yadav, S., Agnihotri, S., Gupta, S. & Tripathi, R.K. 2014. Incorporation of STP sludge and fly ash in brick manufacturing: An attempt to save the environment. International Journal of Advancements in Research & Technology 3(5): 138-144.

Yang, D., Xi, Z., Chen, Q. & Li, S. 2020. Mechanical properties of tunnel muck with fly-ash geopolymer. Advances in Civil Engineering 2020: 1-10. https://doi.org/10.1155/2020/7247134

Zain, H., Abdullah, M.M.A.B., Hussin, K., Ariffin, N. & Bayuaji, R. 2017. Review on various types of geopolymer materials with the environmental impact assessment. MATEC Web of Conference 97: 1-9. http://dx.doi.org/10.1051/mateccomf/2017970121

Zhang, L. 2013. Production of bricks from waste materials - A review. Construction and Building Materials 1(47): 643-655.

Zierold, K.M. & Odoh, C. 2020. A review on fly ash from coal-fired power plants: Chemical composition, regulations and health evidence. Reviews on Enviromental Health 35(4): 402-418. https://doi.org/10.1515/reveh-2019-0039

 

*Corresponding author; email: zarah1970@ukm.edu.my

 

 

 

 

 

previous