Sains Malaysiana 51(12)(2022):
4111-4124
http://doi.org/10.17576/jsm-2022-5112-19
Peningkatan Kecekapan Elektrik Sistem Suria Hibrid Fotovoltan Terma-Termoelektrik (PVT-TE) oleh Kesan Termoelektrik
(Electrical Efficiency Enhancement of Thermal-Thermoelectric Photovoltaic
Hybrid Solar System (PVT-TE) by Thermoelectric Effect)
NURUL
SYAKIRAH NAZRI1, AHMAD FUDHOLI1, 2, MASITA MOHAMMAD1,*, CUK SUPRIYADI ALI NANDAR2,
HENNY SUDIBYO2,
HAZNAN ABIMANYU2, KAMARUZZAMAN SOPIAN1 & MOHD ADIB IBRAHIM1
1Solar Energy Research Institute, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research Center for Energy Conversion and Conservation, National Research and Innovation Agency
(BRIN), Indonesia
Received:17
June 2022/ Accepted:15
August 2022
Abstrak
Sistem fotovoltan terma (PVT) menggunakan fotovoltan dan pengumpul haba suria untuk mendapatkan haba dan elektrik. Memandangkan kedua-dua haba dan elektrik boleh dijana dan digunakan secara serentak, sistem PVT mempunyai keluaran tenaga yang lebih besar bagi setiap unit luas daripada modul PV atau pengumpul haba suria kendiri. Pengumpul PVT berasaskan udara menggunakan udara sebagai medium pemindahan haba dan corak aliran memberi kesan kepada prestasi pengumpul. Uji kaji telah dijalankan untuk menilai prestasi haba dan elektrik bagi pengumpul PVT berasaskan udara. Gabungan antara penjana termoelektrik (TE) dengan sistem PVT ialah cara yang inovatif untuk meningkatkan lagi penukaran tenaga suria dan meningkatkan kuasa elektrik. Selain mengurangkan suhu permukaan sel PV, kecerunan terma yang disebabkan oleh haba yang dijana dalam modul PV boleh menjana elektrik kerana kesan Seebeck oleh modul TE. Di samping itu, gabungan kedua-dua sistem mempunyai potensi untuk meningkatkan prestasi disebabkan oleh kesan tambahan kedua-dua sistem. Penjana termoelektrik dapat menggunakan sisa haba sistem suria untuk mencipta tenaga tambahan seterusnya meningkatkan jumlah keluaran kuasa dan kecekapan sistem hibrid PVT-TE. Kesan kadar alir jisim dan keamatan sinaran juga diselidik. Kajian dilakukan pada kadar alir jisim udara 0.009 kg/s, 0.021 kg/s, 0.039 kg/s, 0.069 kg/s dan 0.095 kg/s dan keamatan cahaya antara 455.64 W/m2 hingga 795.18 W/m2. Nilai ini digunakan dalam menghitung kecekapan terma dan elektrik bagi sistem PVT yang dicadangkan. Kuasa keluaran keseluruhan sistem PVT dibandingkan antara keadaan 'dengan TE' dan 'tanpa TE'. Secara keseluruhannya, pertambahan kuasa keluaran bagi sistem PVT-TE adalah lebih tinggi berbanding sistem PVT sebanyak 32.59% hingga 55.93%.
Kata kunci: Fotovoltan terma; kecekapan elektrik; pengumpul suria; termoelektrik
Abstract
A photovoltaic
thermal (PVT) system uses a photovoltaic and a solar thermal collector to
create heat and electricity. Since both heat and electricity may be generated
and consumed concurrently, PVT systems have a greater energy output per unit
area than PV modules or solar thermal collectors. Air-based PVT collectors
employ air as a heat transfer medium and flow patterns impact collector
performance. Experiments were used to evaluate the thermal and electrical
performance of an air-based PVT collector. In addition to lowering the surface
temperature of PV cells, the thermoelectric Seebeck effect enables the thermal gradient induced by the heat generated in the PV
module to generate electricity. Combining thermoelectric generators (TE) with
PVT systems is an innovative way to further enhance solar energy conversion and
increase electric power. In addition, the combination of both systems has the
potential to improve performance owing to the compensatory effects of both
systems. The thermoelectric generator may utilise the solar system's waste heat
to create extra energy, therefore enhancing the hybrid system's total power
output and efficiency of the PVT-TE system. The effect of mass flow rate and
radiation intensity is also being investigated. Experimental studies were
carried out at airflow rate of 0.009 kg/s, 0.021 kg/s, 0.039 kg/s, 0.069 kg/s
and 0.095 kg/s and radiation intensities in the range of 455.64 W/m2 to 795.18 W/m2. These readings were used in calculating the thermal
and electrical efficiency of the proposed PVT system. The output PVT power was
compared between ‘with TE’ and ‘without TE’ conditions. Overall, the
output power of the PVT-TE system is also higher than the PVT system in the
range of 32.59% to 55.93%.
Keyword: Electrical efficiency; photovoltaic
thermal; solar collector; thermoelectric
REFERENCES
Bhubaneswari, P. & Goicranco,
I.S. 2011. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Review 15: 1623-1636.
Choudhary, P. & Srivastava,
R.K. 2019. Sustainability perspectives - A review for solar photovoltaic trends
and growth opportunities. J. Clean Prod. 227: 589-612.
Cuce, E. 2009. Thermodynamic analysis
of the effectiveness of different types of PV modules for wet conditions. M.Sc. Thesis. Karadeniz Technical
University (Unpublished).
Cuce, E. & Cuce,
P.M. 2014. Improving thermodynamic performance parameters of silicon
photovoltaic cells via air cooling. Int.
J. Ambient Energy 35(4): 193-199.
Daghigh, R. &
Khaledian, Y. 2018. Effective
design, theoretical and experimental assessment of a solar thermoelectric
cooling-heating system. Solar
Energy 162: 561-572.
Deng,
Y., Zhu, W., Wang, Y. & Shi, Y. 2013. Enhanced
performance of solar-driven photovoltaic-thermoelectric hybrid system in an
integrated design. Solar Energy 88:
182-191.
Dimri, N., Tiwari, A. & Tiwari, G.N.
2017. Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Convers. Manag. 146: 68-77.
Florschuetz, L.W. 1979. Extension of the Hottel-Whillier
model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy 22(4): 361-366.
Garg, H.P. & Agarwal,
R.K. 1995. Some aspects of a PV/T collector/forced circulation flat plate solar
water heater with solar cells. Energy
Conversion and Management 36(2): 87-99.
Ghani, F., Rosengarten,
G., Duke, M. & Carson, J.K. 2015. On the influence of temperature on
crystalline silicon solar cell characterisation parameters. Solar Energy 112: 437-445.
Hussain, F., Othman,
M.Y.H., Sopian, K., Yatim, B., Ruslan, M.H. & Othman, H. 2013. Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector. Renewable and Sustainable Energy Reviews 25: 431-441.
Incropera, F.P., Dewitt,
D.P., Bergman, T.L. & Lavine, A.S. 2006. Fundamentals of Heat and Mass Transfer. 6th ed. New York: John
Wiley & Sons.
Jia, Y., Alva, G. &
Fang, G. 2019. Development and applications of photovoltaic–thermal systems: A
review. Renew Sustain Energy Rev. 102: 249-265.
Mojumder, J.C., Ong,
H.C., Chong, W.T., Leong, K.Y. & Izadyar, N. 2017. An empirical analysis on
photovoltaic thermal system with fin design by forced air circulation. Journal of Mechanical Science and Technology 31(5): 2549-2557.
Parthiban, A., Reddy, K.S., Pesala, B. & Mallick, T.K. 2020. Effects of operational and environmental
parameters on the performance of a solar photovoltaic-thermal collector. Energy Conversion and Management 205: 112-428.
Rowe,
D.M. 2006. Thermoelectric Handbook: Macro to Nano. Boca Raton: CRC
Press.
Salaymeh, A.Al., Al-Hamamre, Z., Sharaf, F. & Abdelkader, M.R. 2010.
Technical and economical assessment of the utilization of photovoltaic systems
in residential buildings: The case of Jordan. Energy Conversion and Management 51(8): 1719-1726.
Sharma,
S., Dwivedi, V.K. & Pandit, S. 2014. A review of thermoelectric devices for
cooling applications. International
Journal of Green Energy 11(9): 899-909.
Shen, L., Xia, Fu., Chen,
H. & Wang, S. 2013. Investigation of a novel thermoelectric radiant
air-conditioning system. Energy and Buildings 59: 123-132.
van
Sark, W.G.J.H.M. 2011. Feasibility of photovoltaic–thermoelectric hybrid
modules. Applied Energy 88(8): 2785-2790.
Zheng,
J.C. 2008. Recent advances on thermoelectric materials. Front. Phys.
China 3: 269-279.
*Corresponding author; email: masita@ukm.edu.my
|