Sains Malaysiana 51(12)(2022):
4197-4208
http://doi.org/10.17576/jsm-2022-5112-26
Kajian Potensi Kompleks Kuprum(II)Tetraaza sebagai Ionofor Pengesan Ion Iodida
(Study on
the Potential of Copper(II)Tetraaza Complex as
Ionophore for Detecting Iodide Ion)
DEVIKA NOKARAJOO1,
SUHAILA SAPARI1, NORAISYAH ABDUL KADIR JILANI1, FAZIRA
ILYANA ABDUL RAZAK2, BOHARI YAMIN1 & SITI AISHAH HASBULLAH1,*
1Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Kimia, Fakulti Sains, Universiti Teknologi Malaysia,
81000 Skudai, Johor Darul Takzim, Malaysia
Received:10 May 2022/ Accepted:16
November 2022
Abstrak
Pengesanan anion toksik secara memilih adalah penting dalam pembangunan kimosensor kolorimetri. Kompleks kuprum(II)tetraaza (CuT) pertama kali dikaji sebagai ionofor dalam pengesanan anion iodida. Kajian pengesanan anion meliputi kajian kolorimetri, kajian pengikatan menggunakan Spektroskopi Utralembayung Boleh Nampak (ULBN) dan kajian komputeran melalui pengiraan Teori Fungsi Ketumpatan (DFT). Perubahan warna berlaku apabila kompleks CuT ditambah dengan anion iodida (I-), tiosianat (SCN-) dan sianat (CN-) iaitu daripada ungu kepada kuning atau merah jambu. Nilai pemalar pengikatan, Kb untuk anion I-, SCN- dan CN- masing-masing adalah 160.7, 27.1 dan 21.6 M-1 membuktikan kompleks CuT mempunyai interaksi yang kuat terhadap anion I-. Nisbah mod pengikatan antara CuT dengan anion I-, SCN-, CN- adalah 1:2 berdasarkan graf keseimbangan. Kajian interferen menunjukkan CuT mempunyai keterpilihan yang lebih tinggi terhadap anion I-. Pengiraan DFT membuktikan poli(n-butil akrilat),
[poli(nBA)] sesuai digunakan sebagai matriks pemegunan kompleks CuT. Nilai tenaga pengikatan (Epengikatan) antara kompleks CuT terpegun poli(nBA) dengan anion iodida yang lebih rendah iaitu -1613.424673 eV berbanding dengan kompleks CuT dengan anion I- sahaja iaitu -1567.056909 eV menunjukkan pembentukan ikatan yang lebih kuat antara kompleks CuT terpegun poli(nBA) dengan anion I-.
Sensor optik ini dapat difabrikasikan berasaskan kompleks CuT sebagai ionofor dipegunkan menggunakan poli(nBA) bagi pembangunan sensor ion I-.
Kata kunci: Anion iodida; DFT; kolorimetri; kuprum(II)tetraaza; ULBN
Abstract
Selective detection of toxic anions
is important in developing colorimetric chemical sensors. Copper(II)tetraaza (CuT) complex is used
for the first time as an ionophore in detecting iodide anions. The anion
detection studies include colorimetric studies, binding studies using
ultraviolet-visible spectroscopy (ULBN), and Density Functional Theory (DFT)
calculation. Visible color changes occurred when the CuT complex was added to the iodide (I-), thiocyanate (SCN-),
and cyanate (CN-) anion from purple to yellow or pink. The binding constant, Kb values for I-, SCN-, and CN- anions were
160.7, 27.1, and 21.6 M-1, respectively, demonstrating the strongest
binding interaction towards I- anion. The binding mode
ratio between CuT and anions (I-, SCN-,
CN-) is 1:2 from the equilibrium graph. Interference studies show CuT has a higher selectivity towards the I- anion. DFT calculations showed that poly(n-butyl
acrylate), [poly(nBA)] is suitable to be used as a
solid support for CuT complex. A lower binding energy
(binding) value of -1613.424673 eV for CuT complex
[immobilized with poly(nBA)] with I- anion
compared to CuT complex with I- anion
alone of -1567.056909 eV indicates the formation of strong bond between CuT complex [immobilized with poly(nBA)]
with I- anion. An optical sensor can be fabricated on CuT complex as an ionophore and immobilized using poly(nBA) to develop an I- ion sensor.
Keywords: Colorimetric; copper(II)tetraaza; DFT; iodide anion;
ULBN
REFERENCES
Abbasi,
A. & Khataee, A. 2019. Band gap tunability and structural stability of metal/nonmetal codoped group-IV tin nanotubes: Effect of spin-orbit
coupling. Physica E: Low-Dimensional Systems and
Nanostructures 114: 113644.
Amaladasan, M.
& Arockiadoss, P. V. 2012. Synthesis and characterisation of 18-membered tetraaza macrocyclic ligand and it complexes of Mn(II), Co(II), Ni(II), and Cu(II). Synthesis 4(3): 1114-1118.
Barnard,
B., Bode-Aluko, C. Pereao, O., Fatoba,
O., Luckay, R. & Petrik, L.F. 2018. The Synthesis of Highly Selective
Immobilized Ligands for Extraction of Toxic Metals Ions from Wastewater. The Water Research Commission WRC
Report No. 2391/1/18.
Chandra,
S., Monika, T. & Swati, A. 2010. Synthesis and characterization of a tetraaza macrocyclic ligand and its cobalt(II), nickel(II)
and copper(II) complexes. Journal of The Serbian Chemical Society 75(7):
935-941.
Chen, J., Lin, Q., Li, W-T., Zhang, Y-M. & Wei, T-B.
2016. A highly selective colorimetric chemosensor for detection of iodide ions
in aqueous solution. RSC Advances 89(6): 86627-86631.
Dessi, A.M., Andreae, M., Mullen, D.G., Holl, M.M.B. & Baker,
J.R. 2012. Acetonitrile shortage: Use of isopropanol as an alternative elution
system for ultra/high performance liquid chromatography. National Library of
Medicine 3(1): 56-58.
Fakhar,
I., Hussien, N.J., Sapari,
S. & Bloh, A.H. 2018. Synthesis, X-Ray
diffraction, theoretical and anti-bacterial studies of bis-thiourea secondary
amine. Journal of Molecular Structure 1159: 96-102.
Firdaus,
F., Fatma, K., Azam, M., Khan, S.N., Khan, A.U. & Shakir, M. 2009. Template
synthesis and physico-chemical characterization of
14-membered tetraimine macrocyclic complexes, [MLX(2)] [M=Co(II), Ni(II), Cu(II) and Zn(II)]. DNA binding
study on [CoLCl(2)] complex. Journal of American Chemical Society 138(41):.
Gunnlaugsson, T.,
Kruger, P.E., Jensen, P., Tierney, J., Ali, H. & Hussey, G.M. 2005.
Colorimetric “naked eye” sensing of anions in aqueous solution. The Journal of
Organic Chemistry 70(26
Hassan,
N.H., Ali, N.M., Yamin, B.M., Karim, N.H.A. &
Ghani, N.A.A. 2014. Sintesis dan pencirian kompleks diperklorat 5,5,7,12,12,14-heksametil-1,4,8,11- tetraazasiklotetradeka-7,14-dienium kuprum(II). Malaysian Journal of Analytical Sciences 18(3): 562-571.
Ishak,
N.I.M. & Yamin, B.M. 2013. Complexation of
5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-diene dithiocyanate with nickel(II)acetate. AIP Conference
Proceedings. pp. 918-925.
Ismail,
W., Yamin, B.M. & Daran, J.C. 2012.
5,5,7,12,14,14-Hexamethyl-1,8-diaza-4,11-diazo-niacyclo-tetra-deca-4,11-diene
dichloride trihydrate. Acta Cryst. E68(5): o1476-o1477.
Kang,
S.G., Kim, M.S., Choi, J.S. & Cho, M.H. 1995. Synthesis, characterisation, and properties of new fully N-alkylated
14-membered tetraaza macrocycles and their copper
(II) complexes. Polyhedron 14(6): 781-786.
Kang,
S.O., Hossain, M.A. & Bowman, J.K. 2006. Influence of dimensionality and
charge on anion binding in amide-based macrocyclic receptors. Coordination
Chemistry Reviews 250(23-24): 3038-3052.
Kapil, U.
2007. Health consequences of iodine deficiency. Sultan Qaboos University
Medical Journal 7(3): 267-272.
Kennedy,
A.R., Lutta, S.T., Morrison, C.A., Okoth, M.O. & Orang’o, D.M. 2011.
5,7,7,12,14,14-Hexamethyl-4,8-diaza-1,11-diazoniocyclotetradeca-4,11-diene
diiodide dihydrate. Acta Crystallographica Section
E: Structure Reports Online 67(3): 0682-0683.
Kobko, N.
& Dannenberg, J.J. 2001. Effect of basis set superposition error (BSSE)
upon ab initio calculations of
organic transition states. Journal of
Physical Chemistry A 105(10): 1944-1950.
Kuntz,
I.D., Gasparro, F.P., Johnston, M.D. & Taylor, R.P. 1968. Molecular
interactions and the Benesi-Hildebrand equation. Journal of American Chemical Society 90(18):.
Matta,
C.F. 2010. How dependent are molecular and atomic properties on the electronic
structure method? Comparison of Hartree-Fock, DFT,
and MP2 on a biologically relevant set of molecules. Journal of Computational
Chemistry 31(6): 1297-1311.
Noorhanani Mohd Ali. 2014. Pengkompleksan garam Curtis perklorat dengan kuprum dalam akueus dan cecair ionik. Tesis Sarjana, Universiti Kebangsaan Malaysia, Malaysia (Tidak diterbitkan).
Normaya, E., Fazli, M., Norazmi Ahmad, M. & Ku Bulat,
K.H. 2019. COSMO-RS and DFT studies on development and optimization of
quercetin as a chemosensor for Fe3+ recognition in aqueous medium. Journal
of Molecular Structure 1184: 538-545.
Nurul Atikah binti Safiin. 2016. Pengkompleksan garam
5,5,7,12,12,14-heksametil1,4,8,11-tetraazasiklotetradeka-7,14-dienium dibromida dengan logam lantanida. Tesis Sarjana, Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Panchbhai, M.A., Paliwal, L. & Bhave, N.
2008. Synthesis and characterisation of complex
compounds of tetra-aza macrocyclic ligand. Journal
of Chemistry 5(S1): 1048-1054.
Pearson,
R.G. 1968. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. Journal of Chemical Education 45(9): 581.
Patil,
D.Y., Patil, A.A., Khadke, N.B. & Borhade, A.V. 2019. Highly selective and sensitive
colorimetric probe for Al3+ and Fe3+ metal ions based on
2- Aminoquinolin-3-yl phenyl hydrazone schiff base. Inorganica Chimica Acta 492: 167-176.
Razak, N.H.A., Tan, L.L., Hasbullah, S.A. & Heng, L.Y.
2020. Reflectance chemosensor based on bis-thiourea derivative as ionophore for
copper(II)ion detection. Microchemical Journal 153: 104460.
Reddy,
P.M., Rohini, R., Krishna, E.R., Hu, A. & Ravinder, V. 2012. Synthesis,
spectral and antibacterial studies of copper(II) tetraaza macrocyclic complexes. International Journal of Molecular Sciences 13(4): 4982-4992.
Singh,
D. & Kumar, K. 2010. Macrocyclic complexes: Synthesis and characterization. Journal of Serbian Chemical Society 75(4): 475-482.
https://doi.org/10.2298/JSC091021028S
Ying, K.S., Awang Ngah, F.A., Sapari, S., Heng, L.Y. &
Hasbullah, S.A. 2019. Complexation study of bis-thiourea compound with
aluminium ion as ionophore for development of potentiometric ion sensor. Sains
Malaysiana 48(12):
2649-2661.
Yu, H.,
Peng, J., Zhai, M., Li, J., Wei, G. & Qiao, J. 2007. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl
methacrylate) latex interpenetrating polymer networks by radiation-induced
seeded emulsion polymerization. Radiation Physics and Chemistry 76(11-12): 1746-1750.
Yusoff, S., Huddin, A., Yusoff, L., Yamin, B., Nazlina, I.N. & Leng, O. 2015. Synthesis, characterization, and
antibacterial activity of Cu(II), Ni(II), and Zn(II) complexes of 14-membered
macrocyclic tetraaza ligand. Oriental Journal of
Chemistry 31(3): 1751-1758.
Yusoff,
S.F.M., Ismail, W., Yarmo, A., Ibrahim, N. & Yamin, B.M. 2014. Protonated 14-membered 5, 5, 7, 12, 12,
14-hexamethyl-1, 4, 8, 11tetrazacyclotetradeca-7, 14-diene salts, and their
biological activity. International Journal on Advanced Science, Engineering,
and Information Technology 3(2): 142-144.
Yusoff, L.M., Yusoff, S.F.M., Ismail, W. & Yamin,
B.M. 2013. Synthesis and characterization of Ni(II) complex with
5,5,7,12,12,14-hexamethyl-1,4,8,11tetraazacyclotetradeca-7,14-dienium bromide. AIP
Conference Proceedings. 1614: 358. https://doi.org/10.1063/1.4895222
*Corresponding
author; email: aishah80@ukm.edu.my
|