Sains
Malaysiana 51(1)(2022): 149-159
http://doi.org/10.17576/jsm-2022-5101-12
Electrochemical Degradation of Methylene Blue using Ce(Iv) Ionic Mediator in the Presence of Ag(I) Ion Catalyst for Environmental Remediation
(Degradasi Elektrokimia bagi Metilena Biru menggunakan
Perantara Ion Ce(Iv) dengan Kehadiran Pemangkin Ion Ag(I) untuk Pemulihan Alam
Sekitar)
HENRY SETIYANTO1,2*, FENI MUSTIKA SARI1,
MUHAMMAD YUDHISTIRA AZIS1, RIA SRI RAHAYU1, AMMINUDIN
SULAEMAN1, MUHAMMAD ALI ZULFIKAR1, DIAH RATNANINGRUM3 & VIENNA SARASWATY3
1Analytical Chemistry
Research Group, Bandung Institute of Technology, Bandung, Indonesia
2Center for Defense and
Security Research, Bandung Institute of Technology, Bandung, Indonesia
3Research Unit for Clean
Technology, Indonesian Institute of Sciences, Bandung, Indonesia
Received: 14 January 2021/Accepted: 9 May 2021
ABSTRACT
Methylene blue (MB) is
often used in textile industries and is actively present in the wastewater
runs-off. Recently, mediated electrochemical oxidation (MEO) offers a fast,
reliable and promising results for environmental remediation. Thus, we aimed to
evaluate the electro-degradation potential of MB by MEO using Ce(IV) ionic
mediator. Furthermore, we also observed the influence of addition Ag(I) ion
catalyst in MEO for degradation of MB. The electro-degradation of MB was
evaluated by cyclic voltammetry technique and was confirmed by UV-Vis
spectrophotometry, high performance liquid chromatography (HPLC) analysis and
back-titration analysis. The results showed that in the absence of Ag(I) ion
catalyst, about 89 % of MB was decolorized within 30 min. When 2 mM of Ag(I)
ion catalyst was applied, the electro-degradation of MB was increased to
maximum value of 100%. The UV-Vis spectrum confirmed the electro-degradation of
MB as suggested by decreased maximum absorbance value at λ 668 nm from
2.125 to 0.059. The HPLC analysis showed the formation of five new peaks at
retention time of 1.331, 1.495, 1.757, 1.908, and 2.017 min, confirming the
electro-degradation of MB. The back-titration analysis showed about 52.9% of CO2 was produced during electro-degradation of MB by MEO. More importantly, more
than 97% of Ce(IV) ionic mediator were recovered in our investigation. Our
results showed the potential of MEO using Ce(IV) ionic mediator to improve the
wastewater runs-off quality from textile as well as other industries containing
methylene blue.
Keywords: Ag(I); Ce(IV); ionic mediator; mediated electrochemical oxidation; methylene blue
ABSTRAK
Metilena biru (MB) sering digunakan dalam industri tekstil
dan terdapat secara aktif dalam aliran air buangan. Baru-baru ini, pengoksidaan
elektrokimia pengantara (MEO) menawarkan hasil yang pantas, boleh dipercayai
dan menjanjikan pemulihan bagi alam sekitar. Oleh itu, potensi
elektro-degradasi MB oleh MEO menggunakan perantara ion Ce(IV) dinilai.
Tambahan pula, pengaruh penambahan mangkin ion Ag(I) dalam MEO untuk degradasi
MB dapat dilihat. Elektro-degradasi bagi MB dinilai menggunakan teknik
voltametri kitaran dan disahkan oleh spektrofotometri UV-Vis, analisis
kromatografi cecair berprestasi tinggi (HPLC) dan analisis pentitratan balik.
Keputusan menunjukkan bahawa dengan ketiadaan mangkin ion Ag(I), kira-kira 89%
MB telah dinyahwarna dalam masa 30 minit. Apabila 2 mM mangkin ion Ag(I)
digunakan, elektro-degradasi MB meningkat kepada 100%. Spektrum UV-Vis
mengesahkan elektro-degradasi MB seperti yang dicadangkan oleh penurunan nilai
penyerapan maksimum pada λ 668 nm daripada 2.125 kepada 0.059. Analisis
HPLC menunjukkan pembentukan lima puncak baharu pada masa penahanan 1.331, 1.495,
1.757, 1.908 dan 2.017 min. Analisis pentitratan balik menunjukkan sebanyak
52.9% CO2 dihasilkan semasa elektro-degradasi MB oleh MEO. Lebih
penting lagi, lebih daripada 97% perantara ion Ce(IV) telah ditemui dalam
kajian ini. Keputusan ini menunjukkan tentang potensi MEO menggunakan perantara
ion Ce(IV) untuk meningkatkan kualiti aliran air buangan daripada tekstil serta
industri lain yang mengandungi metilena biru.
Kata kunci: Ag(I); Ce(IV); metilena biru; pengoksidaan
elektrokimia berperantara; perantara ion
REFERENCES
Alam, F.B. & Hossain, M.A. 2018. Conservation of water
resource in textile and apparel industries. Journal
of Polymer and Textile Engineering 5: 11-14.
Azab, S.M., Shehata, M. & Fekry, A.M. 2019. A novel
electrochemical analysis of the legal psychoactive drug caffeine using a
zeolite/MWCNT modified carbon paste sensor. New
Journal of Chemistry 43: 15359-15367.
Bache, D.H., Hossain, M.D., Al-Ani, S.H. & Jackson, P.J. 1991. Optimum coagulation conditions for a coloured water in terms of floc size, density and strength. Water Supply 9: 93-102.
Balaji, S., Chung, S.J., Matheswaran, M. & Moon, I.L. 2007. Cerium(IV)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor. Korean Journal of Chemical Engineering 24(6): 1009-1016.
Bard, A.J., Parsons, R. & Jordan, J. 1985. Standard Potential in Aqueous Solution.
Boca Raton: CRC Press. p. 834.
Bousher, A., Shen, X.D. & Edyyean, R.G.J. 1997. Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Research 31(8): 2084-2092.
Chung, Y. & Park, S.M. 2000. Destruction of aniline by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators. Journal of Applied Electrochemistry 30: 685-691.
Cuerda-Correa, E.M., Alexandre-Franco, M.F. &
Fernández-González, C. 2020. Advanced oxidation processes for the removal of
antibiotics from water. An overview. Water 12(1):
102.
Ehrampoush, M.H., Moussavi, G.H.R., Ghaneian, M.T., Rahimi,
S. & Ahmadian, M. 2011. Removal of
methylene blue dye from textile simulated sample using tubular reactor and TiO2/Uv-C
photocatalytic process. Iranian Journal
of Environmental Health Sciences & Engineering 8(1): 35-40.
Forgacs, E., Cserháti, T.
& Oros, G. 2004. Removal of synthetic dyes from wastewaters: A review. Environmental
International 30(7): 953-971.
Gita, S., Hussan, A. & Choudhury, T.G. 2017. Impact of textile dyes waste on
aquatic environments and its treatment. Environment and Ecology 35(3C): 2349-2353.
Güyer, G.T., Nadeem, K. & Dizge, N. 2016. Recycling of
pad-batch washing textile wastewater through advanced oxidation processes and
its reusability assessment for Turkish textile industry. Journal of Cleaner Production 139: 488-494.
Hamdaoui, O. & Chiha, M.
2006. Removal of methylene blue from aqueous solutions by wheat
bran. Acta Chimica Slovenica 54(2):
407-418.
Hassaan, M.A. & Nemr, A.E. 2017. Health and environmental impacts of dyes: Mini review. American Journal of Environmental Science and Engineering 1(3): 64-67.
Huang, F., Chen, L., Wang, H. & Yan, Z. 2010. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal 162(1): 250-256.
Kassa, A. & Amare, M. 2019.
Electrochemical determination of paracetamol, rutin and sulfonamide in
pharmaceutical formulations by using glassy carbon electrode: A review. Cogent Chemistry 5(1): 1681607.
Lietzke, M.H. & Stoughton, R.W. 1957. On the
solubility of Ag2SO4 in various electrolyte media.
Effects of the solubility of Ag2SO4 and AgCl on the Ag,
Ag2SO4 and the Ag, AgCl electrodes. Journal of the American Chemical Society 79(9): 2067-2071.
Lellis, B., Favaro-Polonio, C.Z., Pampile, J.A. & Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2): 275-290.
Liu,
W., Ai, Z. & Zhang, L. 2012. Design of a neutral three-dimensional
electro-Fenton system with foam nickel as particle electrodes for wastewater
treatment. Journal Hazard Materials 243: 257-264.
Matheswaran,
M., Balaji, S., Chung, S.J. & Moon, I.S. 2007. Silver-mediated
electrochemical oxidation: Production of silver (II) in nitric acid medium and in situ destruction of phenol in semi-batch process. Journal of Industrial and Engineering Chemistry 13(2): 231-236.
Matheswaran,
M., Chung, S.J. & Moon, I.S. 2008. Cobalt(III)-mediated oxidative destruction of phenol using
divided electrochemical cell. Korean Journal of Chemical Engineering 25(5):
1031-1035.
Möhle, S., Zirbes, M., Rodrigo, E.,
Gieshoff, T., Wiebe, A. & Waldvogel, S.R. 2018. Modern electrochemical
aspects for the synthesis of value-added organic products. Angewandte Chemie 57(21): 6018-6041.
Murali, K. & Uma, R.N. 2016. Removal of basic dye
(methylene blue) using low cost biosorbent: Water hyacinth. International Journal of Advanced
Engineering Technology 7(2): 386-391.
Muslim,
M.S., Setiyanto, H. & Zulfikar, M.A. 2018. Electrodegradation of nonylphenol
ethoxylate (NPE-10) with silver ion catalyzed cerium (IV) in sulfuric acid
medium. In The 8th Annual
Basic Science International Conference, Malang, Indonesia. pp. 85-92.
Palanisami, N., Chung, S.J. &
Moon, I.S. 2015. Cerium(IV)-mediated
electrochemical oxidation process for removal of polychlorinated
dibenzo-p-dioxins and dibenzofurans. Journal of Industrial and Engineering
Chemistry 28: 28-31.
Panizza,
M. & Cerisola, G. 2009. Direct and mediated anodic oxidation of organic
pollutants. Chemical Reviews 109(12):
6541-6569.
Panizza, M. & Cerisola, G. 2008. Electrochemical degradation of methyl red using BDD and PbO2 anodes. Industrial & Engineering Chemistry Research 47: 6816-6820.
Panizza, M., Barbucci, A., Ricotti, R. & Cerisola, G.
2007. Electrochemical degradation of methylene blue. Separation and Purification Technology 54(3): 382-387.
Paulenova, A., Creager, S.E.,
Navratil, J.D. & Wei, Y. 2002. Redox potentials and kinetics of the Ce3+/Ce4+ redox
reaction and solubility of cerium sulfates in sulfuric acid solutions. Journal
of Power Sources 109(2): 431-438.
Ren, X. & Wei, Q. 2011. A simple modeling study of the
Ce(IV) regeneration in sulfuric acid solutions. Journal of Hazardous Materials 192(2): 779-785.
Reza, K.M., Kurny, A. & Gulshan, F. 2016. Photocatalytic
degradation of methylene blue by magnetite + H2O2 + UV
process. International
Journal of Environmental Science & Development 7(5): 325-329.
Setiyanto,
H., Rahmadhani, S., Sukandar, S., Saraswaty, V., Zulfikar, M.A. & Mufti, N.
2020. The performance of
molecularly imprinted polymers (MIPs)-modified carbon paste electrode and its
application in detecting phenol. International
Journal of Electrochemical Science 15: 5477-5486.
Setiyanto, H., Adyatmika, I.M.,
Muslim, M.S., Zulfikar, M.A. & Buchari, B. 2018. Mediated electrochemical
oxidation (MEO) process: A study on nonylphenol ethoxylates (NPE) oxidation in
batch mode using cerium (IV) oxidant. Journal
of Physics: Conference Series 1013: 012201.
Setiyanto, H.,
Agustina, D., Zulfikar, M.A. & Saraswaty, V. 2016. Study on the fenton
reaction for degradation of remazol red B in textile waste industry. Molekul 11(2): 168-179.
Setiyanto,
H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B. 2011. Chemical reactivity of
chlorambucil in organic solvents: Influence of 4-chloro butyronitrile
nucleophile to voltammogram profiles.
International Journal of Electrochemical Science 6: 2090-2100.
Shestakova,
M. & Sillanpää, M. 2017. Electrode materials used for
electrochemical oxidation of organic compounds in wastewater. Reviews in Environmental Science and
Bio/Technology 16: 223-238.
Singh, K., Kumar, P. & Srivastava, R. 2017. An overview of textiles dyes and their
removal techniques: Indian perspective. Pollution
Research 36(4): 790-797.
Sivagami, K., Sakhthivel, K.P. & Nambi, I.M. 2018. Advanced oxidation processes for the treatment of tannery wastewater. Journal of Environmental Chemical Engineering 6(3): 3656-3663.
Song, P., Yang, Z., Zeng, G., Yang,
X., Xu, H., Wang, L., Xu, R., Xiong, W. & Ahmad, K. 2017.
Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chemical Engineering Journal 317:
707-725.
Teng, X., Li, J., Wei, Z., Chen, C., Du, K., Zhao, C., Yang, G. & Li, Y. 2020. Performance and mechanism of methylene blue degradation by an electrochemical process. RSC Advances 10: 24712-24720.
Umoren, S.A., Etim, U.J. &
Israel, A.U. 2013. Adsorption of methylene blue from industrial effluent using
poly (vinyl alcohol). Journal of
Materials and Environmental Science 4(1): 75-86.
Xie, Z., Xiong, F. & Zhou, D. 2011. Study of the Ce3+/Ce4+ redox couple in mixed-acid media (CH3SO3H and H2SO4) for redox flow battery application. Energy Fuels 25(5): 2399-2404.
Yaseen, D.A. & Scholz, M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology 16: 1193-1226.
Zhou, L., Song, W., Chen, Z. & Yin, G. 2013. Degradation of organic pollutants in
wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt
catalyst. Environmental Science &
Technology 47(8): 3833-3839.
*Corresponding author; email:
henry@chem.itb.ac.id
|