Sains
Malaysiana 51(1)(2022): 15-26
http://doi.org/10.17576/jsm-2022-5101-02
Morphometric
Variation among 28 Sub-populations of Barbodes binotatus in Indonesia
(Variasi
Morfometri antara 28 Sub-Populasi Barbodes binotatus di Indonesia)
SEPTIANA SRI ASTUTI1,
ANIK MARTINAH HARIATI2, WAHYU ENDRA KUSUMA2 & DEWA
GEDE RAKA WIADNYA3*
1Faculty of Fisheries and Marine Science, University of
Brawijaya, Jl. Veteran 65145, Malang, East Java
Indonesia
2Department of Aquaculture, Faculty of Fisheries and Marine
Science, University of Brawijaya, Jl. Veteran 65145, Malang, East Java,
Indonesia
3Ichthyofauna, Faculty of Fisheries and Marine Science,
University of Brawijaya, Jl. Veteran 65145, Malang, East Java, Indonesia
Received: 5
October 2020/Accepted: 16 May 2021
ABSTRACT
Morphological variability-based truss
morphometry analysis is often used to identify fish population, morphometric
asymmetry, and evolutionary changes of fishes. This study aims to analyze the
level of symmetry and asymmetry of Barbodes
binotatus from several sampling areas in
terms of geographic distribution variability in Indonesia, such as Java, Bali,
Nusa Tenggara, Sumatera, Kalimantan and Sulawesi. A total of 845 samples were
collected from 28 sampling areas. Digital imaging and landmark points were
analyzed using the tpsDig.2 program. The parameters including standard
landmarks, truss morphometry and geometric-morphometric analysis were completed
using SAGE software in order to identify the symmetry-asymmetry level of fishes
from each location. Results showed a highly asymmetry level (P<0.0001) in
procrustes ANOVA with three factors analyzed: Individual analysis, side
identification, and interactions of individual and side. The asymmetry levels
of B. binotatus were varied within
areas, which recorded at 65.31% for Java Island, 50.16% for Nusa Tenggara,
67.12% for Bali, 67.12% for Sumatera, 30.15% for Kalimantan, and 30.17% for
Sulawesi. The asymmetry level of B. binotatus in four major regions (Java, Nusa Tenggara, Bali, and Sumatra) was
significantly higher (P<0.0001), while other areas in Kalimantan and
Sulawesi tend to be lower than others (P>0.0001). Further research with a
genetic approach is needed to identify genetic populations and prove the
existence of genetic factors that affect the level of asymmetry in individual
body shape.
Keywords: Barbodes
binotatus; fluctuating asymmetry;
morphometric asymmetry
ABSTRAK
Analisis morfometri kekuda berasaskan kebolehubahan
morfologi sering digunakan untuk mengenal pasti populasi ikan, asimetri
morfometri dan perubahan evolusi ikan. Kajian ini bertujuan untuk menganalisis
tahap simetri dan asimetri Barbodes binotatus daripada beberapa kawasan persampelan dari
segi kebolehubahan taburan geografi di Indonesia, seperti Jawa, Bali, Nusa
Tenggara, Sumatera, Kalimantan dan Sulawesi. Sebanyak 845 sampel telah dikumpul
dari 28 kawasan persampelan. Pengimejan digital dan titik mercu tanda
dianalisis menggunakan program tpsDig.2. Parameter termasuk tanda tempat
piawai, morfometri kekuda dan analisis geometri-morfometri telah dilengkapkan
menggunakan perisian SAGE untuk mengenal pasti tahap simetri-asimetri ikan dari
setiap lokasi. Keputusan menunjukkan tahap asimetri tinggi (P<0.0001) dalam
procrusts ANOVA dengan tiga faktor dianalisis: analisis individu, pengenalan
sisi, dan interaksi individu dan sisi. Tahap asimetri B. binotatus adalah berbeza-beza antara kawasan dengan
65.31% untuk Pulau Jawa, 50.16% untuk Nusa Tenggara, 67.12% untuk Bali, 67.12%
untuk Sumatera, 30.15% untuk Kalimantan dan 30.17% untuk Sulawesi. Tahap
asimetri B. binotatus di empat
wilayah utama (Jawa, Nusa Tenggara, Bali dan Sumatera) adalah lebih tinggi
secara signifikan (P<0.0001), manakala kawasan lain di Kalimantan dan
Sulawesi cenderung lebih rendah daripada yang lain (P>0.0001). Kajian lanjut
dengan pendekatan genetik diperlukan untuk mengenal pasti populasi genetik dan
membuktikan kewujudan faktor genetik yang mempengaruhi tahap asimetri dalam
bentuk badan individu.
Kata kunci: Asimetri morfometrik; asimetri turun naik; Barbodes binotatus
REFERENCES
Almeida, D., Almodovar, A., Nicola,
G.G. & Elvira, B. 2008. Fluctuating asymmetry, abnormalities and parasitism
as indicators of environmental stress in cultured stocks of goldfish and carp. Aquaculture 279(1-4): 120-125.
Astuti, S.S., Hariati, A.M., Kusuma,
W.E. & Wiadnya, D.G.R. 2020. Morphometric asymmetry of Barbodes binotatus (cyprinidae) collected from three different
rivers in Java. IOP Conference Series:
Earth and Environmental Science 441: 1-6.
Baumgartner, L. 2005. Fish in Irrigation Supply Offtakes- A
Literature Review. 11th ed. Australia: NSW Department of Primary
Industries. pp. 1-22.
Bergstrom, C.A. & Reimchen, T.E.
2005. Habitat dependent associations between parasitism and fluctuating asymmetry
among endemic stickleback populations. Journal
of Evolutionary Biology 18(4): 939-948.
Bergstrom, C.A. & Reimchen, T.E.
2003. Asymmetry in structural defenses: Insights into selective predation in
the wild. Evolution 57(9): 2128-2138.
Bergstrom, C.A. & Reimchen, T.E.
2002. Geographical variation in asymmetry in Gasterosteus aculeatus. Biological
Journal of the Linnean Society 77(1): 9-22.
Bonada, N. & Williams, D.D.
2002. Exploration of utility of fluctuating asymmetry as an indicator of river
condition using larvae of caddisfly Hydropsychemorosa (Trichoptera: Hydropsychidae). Hydrobiologia 481: 147-156.
Cabuga, C.C., Apostado, R.R.Q.,
Abelada, J.J.Z., Calagui, L.B., Presilda, C.J.R., Angco, M.K.A., Bual, J.L.,
Lador, J.E.O., Jumawan, J.H., Jumawan, J.C., Havana, H.C., Requieron, E.A.
& Torres, M.A.J. 2017. Comparative fluctuating asymmetry of spotted barb (Puntius binotatus) sampled from Rivers
of Wawa and Tubay, Mindanao, Philippines. Computational
Ecology and Software 7(1): 8-27.
Cadrin, S.X. 2000. Advances in
morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10: 91-112.
Daloso, D.M. 2014. The ecological
context of bilateral symmetry of organ and organisms. Natural Science 6(4): 184-190.
Dar, S.A., Najar, A.M., Balkhi,
M.H., Rather, M.A. & Sharma, R. 2012. Length weight relation- ship and
relative condition factor of Schizopyge
esocinus (Heckel, 1838) from Jhelum River, Kashmir. International Journal of Aquatic Science 3(1): 29-36.
Dorado, E., Torres, M.A.J. &
Demayo, C. 2012. Describing body shapes of the white goby, Glossogobius giuris of Lake Buluan in Mindanao, Philippines using
landmark-based geometric morphometric analysis. International Research Journal of Biological Sciences 1(7): 33-37.
Ducos, M.B. & Tabugo, S.R.M.
2015. Fluctuating asymmetry as bioindicator of stress and developmental
instability in Gafrarium tumidum (rib
bed venus clam) from coastal areas of Iligan Bay, Mindanao, Philippines. Aquaculture, Aquarium, Conservation &
Legaslation International Journal of the Bioflux Society 8(3): 292-300.
Farinordin, F.A., Nilam, W.S.W.,
Husn, S.H., Samat, A. & Nor, S.M. 2017. Scale morphologies of freshwater
fishes at Tembat Forest Reserve, Terengganu, Malaysia. Sains Malaysiana 46(9): 1429-1439.
Fessehaye, Y., Komen, H., Rezk,
M.A., van Arendonk, J.A.M. & Bovenhuis, H. 2007. Effects of inbreeding on
survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquaculture 264(1-4): 27-35.
Hata, H., Yasugi, M., Takeuchi, Y.,
Takashi, S. & Hori, M. 2013. Measuring and evaluating morphological
asymmetry in fish: Distinct lateral dimorphism in the jaws of scale-eating
cichlids. Ecology and Evolutions 3(14): 4641-4647.
Hendry, A.P., Bohlin, T., Jonsson,
B. & Berg, O. 2003. To sea or not to sea? Anadromy versus non-anadromy in
salmonids. In Evolution Illuminated: Salmon and Their Relatives. New York: Oxford
University Press. pp. 92-125.
Hermita, J.M., Gorospe, J.G.,
Torres, M.A.J., Lumasag, G.J. & Demayo, C.G. 2013. Fluctuating asymmetry in
the body shape of the mottled spinefoot fish, Siganus fuscescens (Houttuyn, 1782) collected from different bays
in Mindanao Island, Philippines. Science
International (Lahore) 25(4): 857-861.
Iguchi, K.I., Watanabe, K. &
Nishida, M. 2005. Validity of fluctuating asymmetry as a gauge of genetic
stress in ayu stocks. Fisheries Science 71:
308-313.
Iwamoto, K., Chang, C.W., Takemura,
A. & Imai, H. 2012. Genetically structured population and demographic
history of the goldlined spinefoot Siganus
suttatus in the northwestern Pacific. Fisheries
Science 78: 249-257.
Jenkins, A., Kullander, F.F. & Tan, H.H.
2015. Barbodes binotatus. The IUCN
Red List of Threatened Species.
Johnson, O., Neely, K. & Waples,
R. 2004. Lopsided fish of the snake river basin -fluctuating asymmetry as a way
of assessing impact of hatchery supplementation in chinook salmon Oncorhynchus tshawytscha. Environmental Biology and Fisheries 69:
379-393.
Jumawan, J.H.,
Requieron, E.A., Torres, M.A.J., Velasco, J.P.B., Cabuga, C.C., Joseph, C.C.D.,
Lador, J.E.O., Cruz, H.D.D., Moreno, M.P., Dalugdugan, R.O. & Jumawan, J.C.
2016. Investigating fluctuating asymmetry in the matric characteristics off
tilapia Oreochromis niloticus sampled
from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation &
Legislation - International Journal of the Bioflux Society 9(1): 113-121.
Kark, S. 2001. Shifts in
bilateral asymmetry within a distribution range: The case of the chucar
partridge. Evolution 55(10):
2088-2096.
Kark, S., Lens, L., Dongen, V.S. & Schmidt, E. 2004.
Asymmetry patterns across the distribution range. Biological Journal of the Linnean Society 81(3): 313-324.
Kocour, M., Linhart, O. &
Vandeputte, M. 2007. Mouth and fin deformities in common carp: Is there a
genetic basis? Aquaculture 272:
419-422.
Kottelat, M. 2013. The fishes of the
inland waters of Southeast Asia: A catalogue and core bibliography of the
fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bulletin of Zoology 27: 1-663.
Kihslinger, R.L. & Nevitt, G.A.
2006. Early rearing environment impacts cerebellar growth in juvenile salmon. Journal of Experimental Biology 209(3):
504-509.
Langerhans, R.B. & Reznick, D.
2010. Ecology and evolution of swimming performance in fishes: Predicting
evolution with biomechanics. Fish Locomotion
an Etho-Ecological Perspect 200: 200-248.
Leamy, L.J. & Klingenberg, C.P.
2005. The genetics and evolution of fluctuating asymmetry. Annual Review of Ecology, Evolution, and Systematics 36: 1-21.
Lecera, J.M.I., Pundung, N.A.C.,
Banisil, M.A., Flamiano, R.S., Torres, M.A., Belonio, C.L. & Requieron,
E.A. 2015. Fluctuating asymmetry analysis of trimac Amphilophus trimaculatus as indicator of the current ecological
health condition of Lake Sebu, South Cotabato, Philippines. Aquaculture, Aquarium, Conservation &
Legislation International Journal of the Bioflux Society Bioflux 8(4):
507-516.
Lim, L.S., Chor, W.K., Tuzan, A.D.,
Malitam, L., Gondipon, R. & Ransangan, J. 2013. Lengthweight relationships
of the pond-cultured spotted barb (Puntius
binotatus). International Research
Journal of Biological Sciences 2(7): 61-63.
Lutterschmidt, W.I., Martin, S.L.
& Schaefer, J.F. 2016. Fluctuating asymmetry in two common freshwater
fishes as a biological indicator of urbanization and environmental stress
within the Middle Chattahoochee Watershed. Symmetry 8(11): 1-17.
Marquez, E. 2007. Sage: Symmetry and
Asymmetry in Geometric Data Version 1.05 (compiled 09/17/08). http://www.personal.umich.edu/~emarquez/morph/. Accessed on 5 May 2020.
Isa, M.M., Rawi, C.S.M., Rosla, R.,
Shah, S.A.M. & Shah, A.S.R.M. 2010. Length-weight relationships of
freshwater fish species in Kerian River Basin and Pedu Lake. Research Journal of Fisheries and
Hydrobiology 5(1): 1-8.
Mazzi, D., Largiader, C.R. &
Bakker, T.C.M. 2002. Inbreeding and developmental stability in three-spined
sticklebacks (Gasterosteus aculeatus L.). Heredity 89: 293-299.
McKinnon, J.S., Mori, S., Blackman,
B.K., David, L., Kingsley, D.M., Jamieson, L., Chou, J. & Schluter, D.
2004. Evidence for ecology’s role in speciation. Nature 429: 294-298.
Muallil, R.N., Basiao, Z.U., Abella,
T.A. & Garcia, L.M.B. 2014. Fluctuating asymmetry in genetically improved
Nile Tilapia, Oreochromis niloticus (Linnaeus), strains in the Philippines. Philippine
Science Letters 7(2): 420-427.
Natividad, E.M.C., Dalundong, A.O.,
Ecot, J., Jumawan, J.H., Torres, M.A.J. & Requieron, E.A. 2015. Fluctuating
asymmetry as bioindicator of ecological condition in the body shapes of Glossogobius celebius from Lake Sebu,
South Cotabato, Philippines. Aquaculture,
Aquarium, Conservation & Legislation International Journal of the Bioflux
Society Bioflux 8(3): 323-331.
Pana, B.H.C., Lasutan, L.G.C.,
Sabid, J.M., Torres, M.A.J. & Requiron, E.A. 2015. Using geometric
morphometrics to study the population structure of the silver perch, Leiopotherapon plumbeus, from Lake Sebu,
South Cotabato, Philippines. Aquaculture,
Aquarium, Conservation & Legislation International Journal of the Bioflux
Society 8(3): 352-361.
Poulet, N., Reyjol, Y., Collier, H.
& Lek, S. 2005. Does fish scale morphology allow the identification of
populations at a local scale? A case study for rostrum dace Leuciscus leuciscus burdigalensis in
River Viaur (SW France). Aquatic Sciences 67: 122-127.
Polly, D. 2019. Geometric
morphometrics. In The Encyclopedia of Archaeological Sciences,
edited by Varela, S.L.L. Chichester, West Sussex: Wiley Blackwell.
Presilda, C.J.R., Angco, M.K.A.,
Obenza, O.L.P., Membrillos, W., Vera, C.N.M. & Requieron, I.A. 2016.
Fluctuating asymmetry employed in analyzing developmental instability of Cheilopogon pinnatibarbatus from
Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation & Legislation International
Journal of the Bioflux Society 9(1): 91-99.
Robinson, B.W. & Parsons, K.J.
2002. Changing times, spaces, and faces: Tests and implications of adaptive
morphological plasticity in the fishes of northern postglacial lakes. Canadian Journal of Fisheries and Aquatic
Sciences 59(11): 1819-1833.
Rohlf, F.J. 2004. Tpsdig: Digitize Landmarks and Outlines, Version 2.0.5. New York: Department of Ecology and Evolution, State University
of New York.
Savriama, Y., Gomez, J.M.,
Perfectti, F. & Klingenberg, C.P. 2012. Geometric morphometrics of corolla
shape: Dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytologist 196(3): 945-954
Seixas, L.B., Santos, A.F.G.N. &
Santos, L.N. 2016. Fluctuating asymmetry: A tool for impact assessment on
fish populations in a tropical polluted bay. Ecological Indicators 71: 522-532.
Sotola, V.A., Ruppel, D.S., Bonner,
T.H., Nice, C.C. & Martin, N.H. 2019. Asymmetric introgression between
fishes in the Red River basin of Texas is associated with variation in water
quality. Ecology and Evolution 9(4):
213-226.
Swaddle, J.P. 2003. Fluctuating
asymmetry, animal behavior and evolution. Advances
in the Study of Behavior 32: 169-205.
Swain, D.P., Hutchings, J.A. &
Foote, C.J. 2005. Environmental and genetic influences on stock identification
characters. In Stock Identification
Methods, edited by Cadrin, S.X., Friedland, K.D. & Waldman, J.R.
Massachusetts: Academic Press. pp. 45-85.
Trono, D.J.V., Dacar, I.R.,
Quinones, L. & Tabugo, Q.S.R. 2015. Fluctuating asymmetry and developmental
instability in Protoreaster nodosus (chocolate chip sea star) as a biomarker for environmental stress. Computational Ecology and Software 5(2):
119-129.
Wedekind, C. & Muller, R. 2004.
Parental characteristics versus egg survival: Towards an improved genetic
management in the supportive breeding of lake whitefish. Annales Zoologici Fennici 41(1):105-115.
Zakeyudin, M.S., Isa, M.M., Rawi,
C.S.M. & Shah, A.S.M. 2012. Assessment of suitability of Kerian River
tributaries using length-weight relationship and relative condition factor of
six freshwater fish species. Journal of
Environment and Earth Science 2: 52-60.
*Corresponding author; email: dgr_wiadnya@ub.ac.id
|