Sains Malaysiana 51(1)(2022): 67-81

http://doi.org/10.17576/jsm-2022-5101-06

 

Comparison between Satellite-Derived Rainfall and Rain Gauge Observation over Peninsular Malaysia

(Perbandingan antara Pemerhatian Hujan Satelit Terbitan dan Tolok Hujan di Semenanjung Malaysia)

 

AHMAD FAIRUDZ JAMALUDDIN*, MUHAMMAD IKMALNOR MUSTAFA KAMAL, MUHAMMAD HELMI ABDULLAH & AMIRUL NIZAM MARODZI

 

Malaysian Meteorological Department, Jalan Sultan, 46667 Petaling Jaya, Selangor Darul Ehsan Malaysia

 

Received: 21 December 2020/Accepted: 21 May 2021

 

Abstract

Validation of the bias-corrected product of National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre Morphing Technique CMORPH-CRT was conducted using gridded rain gauge dataset of Wong et al. (2011) and rain gauge data from meteorological stations throughout Peninsular Malaysia. The CMORPH-CRT was compared for four contrasting topographic sub-regions of Peninsular Malaysia, i.e. west coast (WC), foothills of Titiwangsa range (FT), inland-valley (IN) and east coast (EC). CMORPH-CRT product with grid resolution of 8 km × 8 km at temporal resolution of 1-hour from 00Z January 1998 to 23Z December 2018 was utilized. The results show that CMORPH-CRT are in agreement with the rain gauge data. The CMORPH-CRT performed best over coastal sub-regions but it underestimated over FT sub-region and overestimated at IN. CMORPH-CRT tend to perform better in moderate rather than heavy rainfall events. For extreme weather events, the CMORPH-CRT had shown capability in observing the formation and decay of low-pressure system in Penang during 4th November 2017 and it is in agreement with rain gauge based SPI index i.e. drought conditions over Peninsular Malaysia. 

 

Keywords: Extreme flood; satellite rainfall; standardized precipitation index

 

Abstrak

Pengesahan pencerapan yang diperbetulkan secara pincang dari National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre Morphing Technique (CMORPH-CRT) dilakukan dengan menggunakan rangkaian tolok hujan bergrid dari Wong et al. (2011) dan pencerapan tolok hujan daripada stesen meteorologi di seluruh Semenanjung Malaysia. Data CMORPH-CRT dibandingkan terhadap empat sub-rantauan topografi Semenanjung Malaysia yang berbeza, iaitu sub-rantauan pantai barat (WC), kaki bukit Banjaran Titiwangsa (FT), lembah-pedalaman (IN) dan pantai timur (EC). Resolusi grid 8 km × 8 km dan resolusi temporal setiap jam CMORPH-CRT dari 00Z Januari 1998 hingga 23Z Disember 2018 digunakan dalam kajian. Hasil kajian menunjukkan bahawa pencerapan CMORPH-CRT adalah tekal dengan pencerapan tolok hujan. CMORPH-CRT cenderung mencerap lebih baik di sub-rantauan pesisir pantai manakala berkurangan di kawasan pergunungan dan berlebihan di sub-rantauan lembah pedalaman. CMORPH-CRT juga cenderung mencerap lebih baik kejadian hujan sederhana berbanding hujan lebat. Untuk kejadian cuaca yang melampau, CMORPH-CRT menunjukkan keupayaan dalam mencerap pembentukan dan penguraian sistem bertekanan udara rendah di Pulau Pinang pada 4 November 2017 dan tekal dengan indeks SPI tolok hujan, yang seterusnya tekal dengan keadaan kemarau di Semenanjung Malaysia.

 

Kata kunci: Banjir besar; hujan satelit; indeks hujan piawai

 

REFERENCES

 

Ahmad, F., Sahrin, M., Kamiluddin, A. & Wahab, A.A. 2018. Comparison of CAPPI Height 2 km and 1 km during Northeast Monsoon. Technical Report: Malaysian Meteorological Department.

Ashouri, H., Hsu, K.L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Cecil, L.D., Nelson, B.R. & Prat, O.P. 2015. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society 96(1): 69-83. doi:10.1175/BAMS-D-13-00068.1

AstroAwani. Fenomena Fujiwhara Punca Banjir di Pulau Pinang. https://www.astroawani.com/berita-malaysia/fenomena-fujiwara-punca-banjir-di-pulau-pinang-159859. Accessed on September 13, 2020.

Ayoub, A.B., Tangang, F., Juneng, L., Tan, M.L. & Chung, J.X. 2020. Evaluation of gridded precipitation datasets in Malaysia. Remote Sensing 12(4): 613. doi:10.3390/rs12040613

Bieliński, T. 2020. A parallax shift effect correction based on cloud height for geostationary satellites and radar observations. Remote Sensing 12(3): 365. doi:10.3390/rs12030365

Buurman, J., Dahm, R. & Goedbloed, A. 2014. Monitoring and early warning systems for droughts: Lessons from floods. SSRN Electronic Journal (January 2014). doi:10.2139/ssrn.2518758

Chang, C.P., Harr, P.A. & Chen, H.J. 2005. Synoptic disturbances over the equatorial South China sea and Western maritime continent during boreal winter. Monthly Weather Review 133(3): 489-503.

Davies, R. 2017. Malaysia - Severe Storm and Floods Leave 7 Dead, 10,000 Displaced. https://floodlist.com/asia/malaysia-penang-kedah-floods-november-2017.

Duan, Z., Liu, J., Tuo, Y., Chiogna, G. & Disse, M. 2016. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment 573: 1536-1553. doi:10.1016/j.scitotenv.2016.08.213

Ebert, E.E. 2007. Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space. Advances in Global Change Research, vol 28, edited by Levizzani, V., Bauer, P. & Turk, F.J. Dordrecht: Springer. pp. 345-356.

Evans, J.P. & Westra, S. 2012. Investigating the mechanisms of diurnal rainfall variability using a regional climate model. Journal of Climate 25(20): 7232-7247. doi:10.1175/JCLI-D-11-00616.1.

Fatkhuroyan, F., Wati, T., Sukmana, A. & Kurniawan, R. 2018. Validation of satellite daily rainfall estimates over Indonesia. Forum Geografi 32(2): 170-180. doi:10.23917/forgeo.v32i2.6288

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. & Michaelsen, J. 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data 2: 1-21. doi:10.1038/sdata.2015.66

Huffman, G.J. & Bolvin, D.T. 2015. Real-time TRMM multi-satellite precipitation analysis data set documentation. NASA Tech. Doc. p. 10.

Jamaluddin, A.F., Tangang, F., Ibadullah, W.M.W., Juneng, L., Yik, D.J., Salimun, E., Dindang, A. & Abdullah, M.H. 2019. Klimatologi kitaran hujan diurnal dan bayu laut-darat di Semenanjung Malaysia. Sains Malaysiana 48(3): 509-522.

Jamaluddin, A.F., Tangang, F., Chung, J.X., Juneng, L., Sasaki, H. & Takayabu, I. 2017. Investigating the mechanisms of diurnal rainfall variability over Peninsular Malaysia using the non-hydrostatic regional climate model. Meteorology and Atmospheric Physics 130: 1-23.

Jamandre, C.A. & Narisma, G.T. 2013. Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmospheric Research 122: 599-608. doi:10.1016/j.atmosres.2012.06.024

Jebson, S. 2007. National Meteorological Library and Archive 2007. Fact sheet No. 3 - Water in the atmosphere. http://cedadocs.ceda.ac.uk/255/1/factsheet03.pdf.

Joyce, R.J., Janowiak, J.E., Arkin, P.A. & Xie, P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5(3): 487-503.

Kubota, T., Ushio, T., Shige, S., Kida, S., Kachi, M. & Okamoto, K. 2009. Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. Journal of the Meteorological Society of Japan 87(a): 203-222.

Kummerow, C., Hong, Y., Olson, W.S., Yang, S., Adler, R.F., Mccollum, J., Ferraro, R., Petty, G., Shin, D.B. & Wilheit, T.T. 2001. The evolution of the goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology and Climatology 40(11): 1801-1820.

Lim J.T. 1979. Characteristics of the winter monsoon over the Malaysian region. PhD Thesis, University of Hawaii (Unpublished).

Mahmud, M.R., Hashim, M. & Reba, M.N.M. 2017. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia? Asia-Pacific Journal of Atmospheric Sciences 53(3): 375-384. doi:10.1007/s13143-017-0042-3

Mohd, M.S.F., Juneng, L., Tangang, F., Rahman, N.F.A., Khalid, K. & Haron, S.H. 2015. Simulation of upper Kuantan river basin streamflow using swat model. In AIP Conference Proceedings. Selangor, Malaysia.

Pai, D.S., Sridhar, L., Guhathakurta, P. & Hatwar, H.R. 2011. District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Natural Hazards 59(3): 1797-1813. doi:10.1007/s11069-011-9867-8

Penang Kini 2017. Banjir Pulau Pinang Fenomena Fujiwhara Punca Banjir. https://www.penangkini.com/search?updated-max=2017-11-08T03:38:00-08:00&max-results=20&reverse-paginate=true&start=40&by-date=false. Accessed on September 13, 2020.

Richard, S.S. 2010. The diurnal variations of rainfall and winds over Malaysia. Master Thesis, University of Hawaii (Unpublished).

Semire, F.A., Mohd-Mokhtar, R., Ismail, W., Mohamad, N. & Mandeep, J.S. 2012. Ground validation of space-borne satellite rainfall products in Malaysia. Advances in Space Research 50(9): 1241-1249. doi:10.1016/j.asr.2012.06.031.

Setiawati, M.D. & Miura, F. 2016. Evaluation of GSMaP daily rainfall satellite data for flood monitoring: Case study - Kyushu Japan. Journal of Geoscience and Environment Protection 4(12): 101-117.

Shige, S. & Kummerow, C.D. 2016. Precipitation-top heights of heavy orographic rainfall in the asian monsoon region. Journal of the Atmospheric Sciences 73(8): 3009-3024.

Shige, S., Kida, S., Ashiwake, H., Kubota, T. & Aonashi, K. 2013. Improvement of TMI rain retrievals in mountainous areas. Journal of Applied Meteorology and Climatology 52(1): 242-254.

Soo, E. Z.X., Wan Jaafar, W. Z., Lai, S. H., Othman, F., Elshafie, A., Islam, T., Srivastava, P. & Othman Hadi, H.S. 2020. Evaluation of bias-adjusted satellite precipitation estimations for extreme flood events in Langat river basin, Malaysia. Hydrology Research 51(1): 105-126. doi:10.2166/nh.2019.071.

Soo, E.Z.X., Jaafar, W.Z.W., Lai, S.H., Islam, T. & Srivastava, P. 2019. Evaluation of satellite precipitation products for extreme flood events: Case study in Peninsular Malaysia. Journal of Water and Climate Change 10(4): 871-892.

Svoboda, M., Hayes, M. & Wood, D. 2012. Standardized Precipitation Index User Guide. Switzerland: World Meteorological Organization Geneva.

Tan, M.L., Tan, K.C., Chua, V.P. & Chan, N.W. 2017. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water (Switzerland) 9(1). doi:10.3390/w9010057

Tan, M.L., Ibrahim, A.L., Duan, Z., Cracknell, A.P. & Chaplot, V. 2015. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing 7(2): 1504-1528. doi:10.3390/rs70201504.

Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A.F. & Juneng, L. 2017. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. International Journal of Climatology 37(S1): 696-716.

Tangang, F.T., Juneng, L., Salimun, E., Vinayachandran, P.N., Seng, Y.K., Reason, C.J.C., Behera, S.K. & Yasunari, T. 2008. On the roles of the northeast cold surge, the Borneo vortex, the Madden-Julian Oscillation, and the Indian Ocean dipole during the extreme 2006/2007 flood in Southern Peninsular Malaysia. Geophysical Research Letters 35(14): 1-6.

Trinh-Tuan, L., Matsumoto, J., Ngo-Duc, T., Nodzu, M.I. & Inoue, T. 2019. Evaluation of satellite precipitation products over central Vietnam. Progress in Earth and Planetary Science 6: 54.

Wei, G., Lü, H., Crow, W.T., Zhu, Y., Wang, J. & Su, J. 2018. Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China. Advances in Meteorology 2018: 3024190. doi:10.1155/2018/3024190.

Wong, C.L., Liew, J., Yusop, Z., Ismail, T., Venneker, R. & Uhlenbrook, S. 2016. Rainfall characteristics and regionalization in Peninsular Malaysia based on a high resolution gridded data set. Water 8(11): 500-516.

Wong, C.L., Venneker, R., Jamil, A.B.M. & Uhlenbrook, S. 2011. Development of a gridded daily hydrometeorological data set for Peninsular Malaysia. Hydrological Processes 25(7): 1009-1020.

Wu, H., Adler, R.F., Tian, Y., Huffman, G.J., Li, H. & Wang, J. 2014. Real-time global flood estimation using satellitebased precipitation and a coupled land surface and routing model. Water Resources Research 50(3): 2693-2717. doi:10.1002/2013WR014710.

Xie, P., Joyce, R., Wu, S., Yoo, S.H., Yarosh, Y., Sun, F. & Lin, R. 2017. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. Journal of Hydrometeorology 18(6): 1617-1641.

Yik, D.J., Sang, Y.W., Chang, N.K., Fakaruddin, F.J., Dindang, A. & Abdullah, M.H. 2018. Analysis of the cyclonic vortex and evaluation of the performance of the radar integrated nowcasting system (RaINS) during the heavy rainfall episode which caused flooding in Penang, Malaysia on 5 november 2017. Tropical Cyclone Research and Review 7(4): 217-229.

Zin, W.Z.W., Jemain, A.A. & Ibrahim, K. 2013. Analysis of drought condition and risk in Peninsular Malaysia using Standardised Precipitation Index. Theoretical and Applied Climatology 111(3-4): 559-568. doi:10.1007/s00704-012-0682-2

 

*Corresponding author; email: fairudz@met.gov.my

     

 

 

previous