Sains Malaysiana 51(1)(2022): 95-105

http://doi.org/10.17576/jsm-2022-5101-08

 

Engineering Lactococcus lactis as a Cell Factory for the Production of Limonene

(Kejuruteraan Lactococcus lactis sebagai Kilang Sel untuk Penghasilan Limonena)

 

NURUL ‘AISHAH SHAILI1, ADELENE AI-LIAN SONG2,3*, SARAH OTHMAN1, LIONEL LIAN AUN IN4, JANNA ONG-ABDULLAH1 & RAHA ABDUL RAHIM1,3

 

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Department of Biotechnology, Faculty of Applied Sciences, UCSI University, KL Campus, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

 

Received: 25 December 2020/Accepted: 25 May 2021

 

ABSTRACT

Limonene is a plant monoterpene which contributes significantly to the scent of most essential oils due to its pleasant fragrance. The compound had been reported to have anti-cancer properties against several types of cancer including colorectal cancer. However, the production of this compound in nature is limited because it is produced as a secondary metabolite. To overcome these challenges, Lactococcus lactis was developed as a heterologous host for the production of limonene. A synthesized limonene synthase (LS) from Mentha spicata (mint) was cloned into L. lactis NZ9000. Western blot analysis using mouse IgG His-Tag monoclonal antibody showed successful LS expression by L. lactis at the size of ~55 kDa. GC-MS analysis results showed that limonene production was optimum after 24 h of induction (~8.0 ppm). Metabolic engineering was attempted to enhance the limonene production by overexpression of lactococcal 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and mevalonate kinase (mvk) genes in the bacterial host. The recombinant L. lactis carrying pNZ:LSMM plasmid successfully enhanced the limonene production to two-fold (~15.1 ppm) after 24 h of induction. The outcomes of this study show the potential of L. lactis to produce plant proteins and bioactive compounds production, which prospectively leads to an oral delivery system for anti-cancer compounds.

 

Keywords: Isoprenoid; lactic acid bacteria; metabolic engineering; monoterpene

 

ABSTRAK

Limonena adalah monoterpena yang menyumbang secara signifikan kepada aroma bagi kebanyakan minyak pati kerana harumannya yang menyenangkan. Bahan ini dilaporkan mempunyai sifat anti-kanser terhadap beberapa jenis kanser termasuk kanser kolorektum. Walau bagaimanapun, penghasilan bahan ini adalah terhad kerana ia dihasilkan sebagai metabolit sekunder. Untuk mengatasi cabaran ini, Lactococcus lactis telah dibangunkan sebagai hos heterologus untuk penghasilan limonena. Gen limonena sintes (LS) yang disintesis daripada Mentha spicata (pudina) telah diklon ke dalam L. lactis NZ9000. Analisis pemblotan Western menggunakan antibodi monoklon IgG His-Tag tikus menunjukkan protein LS berjaya diekspreskan dan mempunyai berat molekul ~ 55 kDa. Keputusan analisis GC-MS menunjukkan bahawa pengeluaran limonena adalah optimum selepas 24 jam induksi (~8.0 ppm). Kejuruteraan metabolik dilakukan untuk meningkatkan penghasilan limonena dengan memasukkan gen 3-hidroksi-3-metilglutaril koenzim A reduktase (HMGR) dan mvk ke dalam hos bakteria. L. lactis rekombinan yang mengandungi plasmid pNZ:LSMM hanya berjaya meningkatkan pengeluaran limonena kepada dua kali ganda (~15.1 ppm) selepas 24 jam induksi. Hasil kajian ini menunjukkan potensi L. lactis untuk penghasilan protein tumbuhan dan sebatian bioaktif, secara prospektif membawa kepada sistem penghantaran oral untuk sebatian anti-kanser.

 

Kata kunci: Bakteria asid laktik; isoprenoid; kejuruteraan metabolik; monoterpena

 

REFERENCES

Alonso, W.R., Rajaonarivony, J.I.M., Gershenzon, J. & Croteau, R. 1992. Purification of 4S-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita) and spearmint (M. spicata). Journal of Biological Chemistry 267(11): 7582-7587.

Alonso-Gutierrez, J., Chan, R., Batth, T.S., Adam, P.D., Keasling, J.D., Petzold, C.J. & Lee, T.S. 2013. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering 19: 33-41.

Bahey-El-Din, M., Gahan, C.G.M. & Griffin, B.T. 2010. Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Current Gene Therapy 10(1): 34-45.

Cano-Garrido, O., Rueda, F.L., Sànchez-García, L., Ruiz-Ávila, L., Bosser, R., Villaverde, A. & García-Fruitós, E. 2014. Expanding the recombinant protein quality in Lactococcus lactis. Microbial Cell Factory 13: 167.

Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J. & Croteau, R. 1993. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. Journal of Biological Chemistry 268(31): 23016-23024.

Crocoll, C., Asbach, J., Novak, J., Gershenzon, J. & Degenhardt, J. 2010. Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Molecular Biology 73(6): 587-603.

Global Paclitaxel Market Growth 2019-2024. https://www.reportsweb.com/reports/global-paclitaxel-market-growth-2019-2024. Accessed on 9 march 2020.

Hernandez, I., Molenaar, D., Beekwilder, J., Bouwmeester, H. & van Hylckama Vlieg, J.E. 2007. Expression of plant flavor genes in Lactococcus lactis. Applied and Environmental Microbiology 73(5): 1544-1552.

Jackson, H., Braun, C.L. & Ernst, H. 2008. The chemistry of novel xanthophyll carotenoids. The American Journal of Cardiology 101(10A): 50D-57D.

Jia, S.S., Xi, G.P., Zhang, M., Chen, Y.B., Lei, B., Dong, X.S. & Yang, Y.M. 2013. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncology Reports 29(1): 349-354.

Jongedijk, E., Cankar, K., Buchhaupt, M., Schrade, J., Bouwmeester, H. & Beekwilder, J. 2016. Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology 100: 2927-2938.

Kim, K.J., Kim, H.E., Lee, K.H., Han, W., Yi, M.J., Jeong, J. & Oh, B.H. 2004. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Science 13(6): 1698-1703.

Kuipers, O.P., Ruyter, P.G.G.A.D., Kleerebezem, M. & Vos, W.M.D. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology 64(1): 15-21.

Kusama, H., Hara, R., Kawahara, S., Nishimori, T., Kashima, H., Nakamura, N., Morihira, K. & Kuwajima, I. 2000. Enantioselective total synthesis of (−)-taxol. Journal of the American Chemical Society 122(16): 3811-3820.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.

Misawa, N. 2011. Pathway engineering for functional isoprenoids. Current Opinion in Biotechnology 22(5): 627-633.

Murthy, K.N.C., Jayaprakasha, G.K. & Patil, B.S. 2012. D-limonene rich volatile oil from blood oranges inhibits angiogenesis, metastasis and cell death in human colon cancer cells. Life Sciences 91(11-12): 429-439.

Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling, J.D. 2007. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering 9(2): 193-207.

Pontes, D.S., de Azevedo, M.S., Chatel, J.M., Langella, P., Azevedo, V. & Miyoshi, A. 2011. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expression and Purification 79(2): 165-175.

Reiling, K.K., Yoshikuni, Y., Martin, V.J., Newman, J., Bohlmann, J. & Keasling, J.D. 2004. Mono and diterpene production in Escherichia coli. Biotechnology and Bioengineering 87(2): 200-212.

Robinson, K., Chamberlain, L.M., Schofield, K.M., Wells, J.M. & Le Page, R.W. 1997. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nature Biotechnology 15(7): 653-657.

Rodríguez-Concepción, M. & Boronat, A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiology 130(3): 1079-1089.

Song, A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N., Othman, R., Noor, N.M. & Raha, A.R. 2014. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production. Microbiology Letters 355(2): 177-184.

Song, A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N. & Raha, A.R. 2012a. Functional expression of an orchid fragrance gene in Lactococcus lactis. International Journal of Molecular Sciences 13(2): 1582-1597.

Song, A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N., Othman, R., Tan, E.F., Noor, N.M. & Raha, A.R. 2012b. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS ONE 7(12): e52444.

Sun, J. 2007. D-limonene: Safety and clinical applications. Alternative Medicine Review 12(3): 259-264.

Thao, N.T., Kashiwagi, T. & Sawamura, M. 2007. Characterization by GC-MS of Vietnamese citrus species and hybrids based on the isotope ratio of monoterpene hydrocarbons. Bioscience, Biotechnology, and Biochemistry 71(9): 2155-2161.

Tsuruta, H., Paddon, C.J., Eng, D., Lenihan, J.R., Horning, T., Anthony, L.C., Regentin, R., Keasling, J.D., Renninger, N.S. & Newman, J.D. 2009. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4(2): 4489.

Wang, G.Y. & Keasling, J.D. 2002. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metabolic Engineering 4(3): 193-201.

Wilding, E.I., Brown, J.R., Bryant, A.P., Chalker, A.F., Holmes, D.J., Ingraham, K.A., Iordanescu, S., So, C.Y., Rosenberg, M. & Gwynn, M.N. 2000. Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in Gram-positive cocci. Journal of Bacteriology 182(15): 4319-4327.

Williams, D.C., McGarvey, D.J., Katahira, E.J. & Croteau, R. 1998. Truncation of limonene synthase preprotein provides a fully active 'pseudomature' form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37(35): 12213-12220.

Yang, J., Nie, Q., Ren, M., Feng, H., Jiang, X., Zheng, Y., Liu, M., Zhang, H. & Xian, M. 2013. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnology for Biofuels 6(1): 60.

 

*Corresponding author; email: adelene@upm.edu.my

     

 

 

previous