Sains
Malaysiana 51(1)(2022): 95-105
http://doi.org/10.17576/jsm-2022-5101-08
Engineering Lactococcus lactis as a Cell Factory for
the Production of Limonene
(Kejuruteraan Lactococcus lactis sebagai Kilang Sel
untuk Penghasilan Limonena)
NURUL ‘AISHAH SHAILI1,
ADELENE AI-LIAN SONG2,3*, SARAH OTHMAN1, LIONEL LIAN AUN
IN4, JANNA ONG-ABDULLAH1 & RAHA ABDUL RAHIM1,3
1Department
of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular
Sciences Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan,
Malaysia
2Department
of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti
Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Institute
of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan,
Malaysia
4Department
of Biotechnology, Faculty of Applied Sciences, UCSI University, KL Campus,
56000 Kuala Lumpur, Federal Territory, Malaysia
Received: 25 December 2020/Accepted:
25 May 2021
ABSTRACT
Limonene
is a plant monoterpene which contributes significantly to the scent of most
essential oils due to its pleasant fragrance. The compound had been reported to
have anti-cancer properties against several types of cancer including
colorectal cancer. However, the production of this compound in nature is
limited because it is produced as a secondary metabolite. To overcome these
challenges, Lactococcus lactis was developed as a heterologous host for
the production of limonene. A synthesized limonene synthase (LS) from Mentha
spicata (mint) was cloned into L.
lactis NZ9000. Western blot analysis
using mouse IgG His-Tag monoclonal antibody showed successful LS expression by L.
lactis at the size of ~55 kDa. GC-MS
analysis results showed that limonene production was optimum after 24 h of
induction (~8.0 ppm). Metabolic engineering was attempted to enhance the
limonene production by overexpression of lactococcal 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGR) and mevalonate kinase (mvk) genes in the bacterial host. The recombinant L. lactis carrying pNZ:LSMM plasmid successfully
enhanced the limonene production to two-fold (~15.1 ppm) after 24 h of
induction. The outcomes of this study show the potential of L. lactis to produce plant proteins and bioactive
compounds production, which prospectively leads to an oral delivery system for
anti-cancer compounds.
Keywords: Isoprenoid; lactic acid bacteria; metabolic engineering;
monoterpene
ABSTRAK
Limonena
adalah monoterpena yang menyumbang secara signifikan kepada aroma bagi
kebanyakan minyak pati kerana harumannya yang menyenangkan. Bahan ini
dilaporkan mempunyai sifat anti-kanser terhadap beberapa jenis kanser termasuk
kanser kolorektum. Walau bagaimanapun, penghasilan bahan ini adalah terhad
kerana ia dihasilkan sebagai metabolit sekunder. Untuk mengatasi cabaran ini, Lactococcus lactis telah dibangunkan
sebagai hos heterologus untuk penghasilan limonena. Gen limonena sintes (LS)
yang disintesis daripada Mentha spicata (pudina)
telah diklon ke dalam L. lactis NZ9000.
Analisis pemblotan Western menggunakan antibodi monoklon IgG His-Tag tikus
menunjukkan protein LS berjaya diekspreskan dan mempunyai berat molekul ~ 55
kDa. Keputusan analisis GC-MS menunjukkan bahawa pengeluaran limonena adalah
optimum selepas 24 jam induksi (~8.0 ppm). Kejuruteraan metabolik dilakukan
untuk meningkatkan penghasilan limonena dengan memasukkan gen
3-hidroksi-3-metilglutaril koenzim A reduktase (HMGR) dan mvk ke dalam hos bakteria. L. lactis rekombinan yang mengandungi plasmid pNZ:LSMM
hanya berjaya meningkatkan pengeluaran limonena kepada dua kali ganda (~15.1
ppm) selepas 24 jam induksi. Hasil kajian ini menunjukkan potensi L. lactis untuk penghasilan protein tumbuhan dan
sebatian bioaktif, secara prospektif membawa kepada sistem penghantaran oral
untuk sebatian anti-kanser.
Kata
kunci: Bakteria asid laktik; isoprenoid; kejuruteraan metabolik; monoterpena
REFERENCES
Alonso, W.R., Rajaonarivony, J.I.M., Gershenzon, J. &
Croteau, R. 1992. Purification of 4S-limonene synthase, a monoterpene cyclase
from the glandular trichomes of peppermint (Mentha
x piperita) and spearmint (M. spicata). Journal of Biological Chemistry 267(11): 7582-7587.
Alonso-Gutierrez, J., Chan, R., Batth, T.S., Adam, P.D.,
Keasling, J.D., Petzold, C.J. & Lee, T.S. 2013. Metabolic engineering of Escherichia coli for limonene and
perillyl alcohol production. Metabolic
Engineering 19: 33-41.
Bahey-El-Din,
M., Gahan, C.G.M. & Griffin, B.T. 2010. Lactococcus
lactis as a cell factory for delivery of therapeutic proteins. Current Gene Therapy 10(1): 34-45.
Cano-Garrido,
O., Rueda, F.L., Sànchez-García, L., Ruiz-Ávila, L., Bosser, R., Villaverde, A.
& García-Fruitós, E. 2014. Expanding the recombinant protein quality in Lactococcus lactis. Microbial Cell Factory 13: 167.
Colby, S.M., Alonso, W.R., Katahira, E.J., McGarvey, D.J.
& Croteau, R. 1993. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation,
characterization, and bacterial expression of the catalytically active
monoterpene cyclase. Journal of
Biological Chemistry 268(31): 23016-23024.
Crocoll, C., Asbach, J., Novak, J., Gershenzon, J. &
Degenhardt, J. 2010. Terpene synthases of oregano (Origanum vulgare L.) and
their roles in the pathway and regulation of terpene biosynthesis. Plant Molecular Biology 73(6): 587-603.
Global Paclitaxel Market Growth 2019-2024. https://www.reportsweb.com/reports/global-paclitaxel-market-growth-2019-2024.
Accessed on 9 march 2020.
Hernandez, I., Molenaar, D., Beekwilder, J., Bouwmeester,
H. & van Hylckama Vlieg, J.E. 2007. Expression of plant flavor genes in Lactococcus lactis. Applied and Environmental Microbiology 73(5): 1544-1552.
Jackson, H., Braun, C.L. &
Ernst, H. 2008. The chemistry of novel xanthophyll carotenoids. The American Journal of Cardiology 101(10A): 50D-57D.
Jia, S.S., Xi, G.P., Zhang, M., Chen, Y.B., Lei, B., Dong,
X.S. & Yang, Y.M. 2013. Induction of apoptosis by D-limonene is mediated by
inactivation of Akt in LS174T human colon cancer cells. Oncology Reports 29(1): 349-354.
Jongedijk, E., Cankar, K., Buchhaupt,
M., Schrade, J., Bouwmeester, H. & Beekwilder, J. 2016. Biotechnological
production of limonene in microorganisms. Applied
Microbiology and Biotechnology 100: 2927-2938.
Kim,
K.J., Kim, H.E., Lee, K.H., Han, W., Yi, M.J., Jeong, J. & Oh, B.H. 2004. Two-promoter
vector is highly efficient for overproduction of protein complexes. Protein Science 13(6): 1698-1703.
Kuipers, O.P., Ruyter, P.G.G.A.D., Kleerebezem, M. &
Vos, W.M.D. 1998. Quorum sensing-controlled gene expression in lactic acid
bacteria. Journal of Biotechnology 64(1): 15-21.
Kusama, H., Hara, R., Kawahara, S.,
Nishimori, T., Kashima, H., Nakamura, N., Morihira, K. & Kuwajima, I.
2000. Enantioselective total synthesis of (−)-taxol.
Journal of the American Chemical Society 122(16): 3811-3820.
Laemmli, U.K. 1970. Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.
Misawa, N. 2011. Pathway engineering for functional
isoprenoids. Current Opinion in
Biotechnology 22(5): 627-633.
Murthy, K.N.C., Jayaprakasha, G.K. & Patil, B.S. 2012.
D-limonene rich volatile oil from blood oranges inhibits angiogenesis,
metastasis and cell death in human colon cancer cells. Life Sciences 91(11-12):
429-439.
Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling,
J.D. 2007. Balancing a heterologous mevalonate pathway for improved isoprenoid
production in Escherichia coli. Metabolic Engineering 9(2): 193-207.
Pontes, D.S., de Azevedo, M.S., Chatel, J.M., Langella,
P., Azevedo, V. & Miyoshi, A. 2011. Lactococcus
lactis as a live vector: Heterologous protein production and DNA delivery
systems. Protein Expression and
Purification 79(2): 165-175.
Reiling, K.K., Yoshikuni, Y., Martin, V.J., Newman, J.,
Bohlmann, J. & Keasling, J.D. 2004. Mono and diterpene production in Escherichia coli. Biotechnology and Bioengineering 87(2): 200-212.
Robinson,
K., Chamberlain, L.M., Schofield, K.M., Wells, J.M. & Le Page, R.W. 1997.
Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nature
Biotechnology 15(7): 653-657.
Rodríguez-Concepción, M. & Boronat, A.
2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid
biosynthesis in bacteria and plastids. A metabolic milestone achieved through
genomics. Plant Physiology 130(3):
1079-1089.
Song,
A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N., Othman, R., Noor, N.M.
& Raha, A.R. 2014. Engineering the lactococcal mevalonate pathway for
increased sesquiterpene production. Microbiology
Letters 355(2): 177-184.
Song, A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N.
& Raha, A.R. 2012a. Functional expression of an orchid fragrance gene
in Lactococcus lactis. International Journal of Molecular Sciences 13(2): 1582-1597.
Song,
A.A.L., Abdullah, J.O., Abdullah, M.P., Shafee, N., Othman, R., Tan, E.F.,
Noor, N.M. & Raha, A.R. 2012b. Overexpressing 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for
heterologous plant sesquiterpene production. PLoS ONE 7(12): e52444.
Sun, J. 2007. D-limonene: Safety and clinical
applications. Alternative Medicine Review 12(3): 259-264.
Thao, N.T., Kashiwagi, T. & Sawamura, M. 2007.
Characterization by GC-MS of Vietnamese citrus species and hybrids based on the
isotope ratio of monoterpene hydrocarbons. Bioscience,
Biotechnology, and Biochemistry 71(9): 2155-2161.
Tsuruta,
H., Paddon, C.J., Eng, D., Lenihan, J.R., Horning, T., Anthony, L.C., Regentin,
R., Keasling, J.D., Renninger, N.S. & Newman, J.D. 2009. High-level
production of amorpha-4,11-diene, a precursor of the antimalarial agent
artemisinin, in Escherichia coli. PLoS ONE 4(2): 4489.
Wang,
G.Y. & Keasling, J.D. 2002. Amplification of HMG-CoA reductase production
enhances carotenoid accumulation in Neurospora crassa. Metabolic
Engineering 4(3): 193-201.
Wilding, E.I., Brown, J.R., Bryant, A.P., Chalker, A.F.,
Holmes, D.J., Ingraham, K.A., Iordanescu, S., So, C.Y., Rosenberg, M. &
Gwynn, M.N. 2000. Identification, evolution, and essentiality of the mevalonate
pathway for isopentenyl diphosphate biosynthesis in Gram-positive cocci. Journal of Bacteriology 182(15):
4319-4327.
Williams, D.C., McGarvey, D.J., Katahira, E.J. &
Croteau, R. 1998. Truncation of limonene synthase preprotein provides a fully
active 'pseudomature' form of this monoterpene cyclase and reveals the function
of the amino-terminal arginine pair. Biochemistry 37(35): 12213-12220.
Yang,
J., Nie, Q., Ren, M., Feng, H., Jiang, X., Zheng, Y., Liu, M., Zhang, H. &
Xian, M. 2013. Metabolic engineering of Escherichia
coli for the biosynthesis of alpha-pinene. Biotechnology for Biofuels 6(1): 60.
*Corresponding author; email: adelene@upm.edu.my
|