Sains Malaysiana 51(2)(2022): 405-419
http://doi.org/10.17576/jsm-2022-5102-07
New Empirical Approach for the Estimation of
Soil Cohesion and Friction Angle in 2D Form for Site Investigations
(Pendekatan Empirik Baru terhadap Anggaran Persepaduan Tanah
dan Sudut Geseran dalam Bentuk 2D untuk Kajian Lapangan)
BALA BALARABE1,2, ANDY ANDERSON BERY1*, TEOH
YING JIA1 & AMIN ESMAIL KHALIL3
1School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
2Department of Physics, Faculty of Physical
Sciences, Ahmadu Bello University, Zaria, Nigeria
3Geology Department, Faculty of Science, Helwan
University, Ain Helwan, Cairo, Egypt
Received: 18 January
2021/Accepted: 18 June 2021
ABSTRACT
This paper presents the
multiple linear regression (MLR) models developed from electrical resistivity
and seismic refraction surveys for quick prediction of subsurface soil’s shear
strength parameters. A total of four parameters have been considered with electrical
resistivity and seismic refraction velocity as the independent variables: and
soil cohesion and internal friction angle as the dependent variables. In order
to mitigate the effects of nonlinearity of resistivity and velocity, both
datasets were initially log-transformed to conform with the fundamental
assumptions of regression analysis. Two models were therefore built based on
the strong multiple linear relationships between explanatory and response
variables, with coefficient of determination (R2), 0.777, p-values,
< 0.050, Durbin-Watson value, 1.787 and multicollinearity, 1.185. The
obtained models’ coefficients were transferred and used for the estimation of
2D models soil cohesion and internal angle of friction for validation.
Thereafter, the developed models demonstrated good performance, having
subjected to accuracy assessment with results at < 5%, and < 10% for the
root mean square error (RMSE) and weighted mean absolute percentage error
(MAPE) respectively. Therefore, the new developed soil’s shear strength MLR
models have provided continual description of soil properties in
two-dimensional form, enhancing the subsurface information for site
investigations as compared, to one-dimensional information from the invasive
method.
Keywords: Land uses; refraction; regression;
resistivity; shear strength
ABSTRAK
Kajian ini membentangkan model regresi linear berganda (MLR) yang dibangunkan daripada tinjauan kerintangan elektrik dan pembiasan seismik untuk meramalkan parameter kekuatan ricih bagi permukaan bawah tanah. Sebanyak empat parameter telah dipertimbangkan dengan halaju kerintangan elektrik dan biasan seismik sebagai pemboleh ubah tidak bersandar: dan persepaduan tanah dan sudut geseran dalaman sebagai pemboleh ubah bersandar. Untuk mengurangkan kesan tidak kelinearan kerintangan dan halaju, kedua-dua set data pada mulanya diubah log untuk mematuhi andaian asas analisis regresi.
Oleh itu, kedua-dua model dibina berdasarkan hubungan linear berganda yang kuat antara pemboleh ubah penjelasan dan tindak balas, dengan pekali penentuan (R2),
0.777, nilai-p, < 0.050, nilai Durbin-Watson, 1.787 dan multikolineariti, 1.185. Pekali model yang diperoleh telah dipindahkan dan digunakan untuk menganggarkan persepaduan tanah model 2D dan sudut geseran dalaman untuk pengesahan. Kemudian, model yang dibangunkan menunjukkan prestasi yang baik, setelah tertakluk kepada penilaian ketepatan dengan keputusan pada < 5 dan < 10% masing-masing untuk ralat purata kuasa dua akar (RMSE) dan ralat peratusan mutlak purata berpemberat (MAPE). Oleh itu, model MLR kekuatan ricih tanah yang baru dibangunkan telah memberikan penerangan berterusan tentang sifat tanah dalam bentuk dua dimensi, maklumat bawah permukaan tanah untuk kajian tapak berbanding dengan maklumat satu dimensi daripada kaedah invasif.
Kata kunci: Biasan; kegunaan tanah; kekuatan ricih; kerintangan; regresi
REFERENCES
Abdul
Hamid, F.A.Z., Abu Bakar, A.F., Ng,
T.F., Ghani, A.A. & Mohamad Zulkefly, M.T. 2019.
Distribution and contamination assessment of potentially harmful elements (As,
Pb, Ni, Cd) in top soil of Penang Island, Malaysia. Environmental Earth Sciences 78(21): 1-12.
Abidin, S.N.Z. & Jaffar,
M.M. 2014. Forecasting share prices of small size companies in Bursa Malaysia using geometric brownian motion. Applied
Mathematics & Information Sciences 8(1): 16632699.
Adewoyin, O., Joshua, E.,
Akinyemi, M.L., Maxwell, O. & Aanuoluwa, A. 2021.
Evaluation of geotechnical parameters of reclaimed land from near-surface
seismic refraction method. Heliyon 7(4): e06765.
Ahmad,
F., Yahaya, A.S. & Farooqi, M.A. 2006. Characterization and geotechnical
properties of Penang residual soils with emphasis on landslide. American Journal of Environmental Sciences 2(4):
121-128.
Al-Heety, A.H. & Shanshal, Z.M.
2016. Integration of seismic refraction tomography and electrical resistivity
tomography in engineering geophysics for soil characterization. Arabian Journal of Geosciences 9(1): 1-11.
Alimoradi, A., Moradzadeh, A., Naderi, R. &
Salehi, M.Z. 2008. Prediction of geological hazardous zones in front of a
tunnel face using TSP-203 and artificial neural networks. Tunnelling and Underground Space Technology 23(6): 711-717.
Azwin, I., Saad, R. & Nordiana, M. 2013. Applying the seismic refraction
tomography for site characterization. Procedia 5: 227-231.
Balarabe, M., Abdullah, K., Nawawi, M. & Khalil, A.E. 2016. Monthly
temporal-spatial variability and estimation of absorbing aerosol index using
ground-based meteorological data in Nigeria. Atmospheric and Climate Science 6(3): 425-444.
Beldjazia, A. & Alatou, D. 2016. Precipitation variability on the Massif Forest of Mahouna (North
Eastern-Algeria) from 1986 to 2010. International
Journal of Management Science and Business Research 5(3): 21-28.
Brixova, B., Mosna, A. & Putiska, R. 2018.
Applications of shallow seismic refraction measurements in the Western
Carpathians (Slovakia): Case
studies. Contributions to Geophysics and
Geodesy 48(1): 1-21.
Caterina,
D., Beaujean, J., Robert, T. & Nguyen, F. 2013. A
comparison study of different image appraisal tools for electrical resistivity
tomography. Near Surface Geophysics 11(6): 639-657.
Collins,
B.D. & Sitar, N. 2016. Geotechnical properties of cemented sands in steep
slopes. Journal of Geotechnical and Geoenvironmental Engineering 135(10): 1359-1366.
Durbin,
J. & Watson, G.S. 1949. Testing for serial correlation in least squares
regression: I. Biometrika 37(3/4): 409-428.
Gabr, A., Murad, A.A.,
Baker, H., Bloushi, K.M.A., Arman, H. & Mahmoud,
S. 2012. The use of seismic refraction and electrical techniques to investigate
groundwater aquifer, Wadi Al-Ain, United Arab Emirates (UAE). In International Conference Water Resources and
Wetland. Tulcea, Romania.
Ghosh,
R. 2013. Effect of soil moisture in the analysis of undrained shear strength of
compacted clayey soil. Journal of Civil
Engineering and Construction Technology 4(1): 23-31.
Guo,
N. & Zhao, J. 2013. The signature of shear-induced anisotropy in granular
media. Computers and Geotechnics 47:
1-15.
Han,
Z., Li, J., Gao, P., Huang, B., Ni, J. & Wei, C. 2020. Determining the
shear strength and permeability of soils for engineering of new paddy field
construction in a hilly mountainous region of Southwestern China. International Journal of Environmental
Research and Public Health 17(5): 1555.
Horn, R.
2003. Stress - strain effects in structured unsaturated soils on coupled
mechanical and hydraulic processes. Geoderma 116: 77-88.
Ismail,
M.A.M., Majid, T.A., Goh, C.O., Lim, S.P. & Tan, C.G. 2019. Geological
assessment for tunnel excavation under river with shallow overburden using
surface site investigation data and electrical resistivity tomography. Measurement 144: 260-274.
Juhojuntti, N. & Kamm, J. 2015. Joint inversion of seismic refraction and
resistivity data using layered models - Applications to
groundwater investigation. Geophysics 80(1): EN43-EN55.
Junior,
S.B.L., Prado, R.L. & Mendes, R.M. 2012. Application of multichannel
analysis of surface waves method (MASW) data acquisition. Revista Brasileira de Geoisica 30(2): 213-224.
Kim,
S. & Kim, H. 2016. A new metric of absolute percentage error for
intermittent demand forecasts. International
Journal of Forecasting 32(3): 669-679.
Martínez,
K. & Mendoza, J.A. 2011. Urban seismic site investigations for a new metro
in central Copenhagen: Near
surface imaging using reflection, refraction and VSP methods. Physics and Chemistry of Earth, Parts A/B/C 36:
1228-1236.
Mcclymont, A., Bauman, P.,
Johnson, E. & Pankratow, L. 2016. Geophysical
applications to construction engineering projects. Recorder 41(4): 16-22.
Meju, M.A., Gallardo, L.A.
& Mohamed, L.K. 2003. Evidence for correlation of electrical resistivity
and seismic velocity in heterogeneous near-surface materials. Geophysical Research Letters 30(7): 7-10.
Mitchell,
J.K. & Soga, K. 2005. Fundamentals of Soil Behavior. 3rd ed. New Jersey: John Wiley & Sons Inc.
Mogaji, K.A., Lim, H.S. &
Abdullah, K. 2015. Modeling of groundwater recharge using a multiple linear
regression (MLR) recharge model developed from geophysical parameters: A case of groundwater resources
management. Environmental Earth Sciences 73(3): 1217-1230.
Mota, R. & Monteiro
Santos, F.A. 2010. 2D sections of porosity and water saturation from integrated
resistivity and seismic surveys. Near
Surface Geophysics 8(6): 575-584.
Muhammad,
S.B. & Saad, R. 2018. Linear regression models for estimating true
subsurface resistivity from apparent resistivity data. Journal of Earth System Science 127(5): 64.
Nguyen,
F., Garambois, S., Jongmans,
D., Pirard, E. & Loke, M.H. 2005. Image
processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics 57: 260-277.
O'Brien,
R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673-690.
Okpoli, C.C. 2013. Sensitivity
and resolution capacity of electrode configurations. International Journal of Geophysics 2013: 608037.
Olabode,
O.P., San, L.H. & Ramli, M.H. 2020. Analysis of geotechnical-assisted 2-D
electrical resistivity tomography monitoring of slope instability in residual
soil of weathered granitic basement. Frontier
in Earth Science 7: 1-15.
Owusu-nimo, F. & Boadu, F.K. 2020.
Evaluating effective stress conditions in soils using non-invasive electrical
measurements - laboratory studies. Journal of Applied
Geophysics 174: 103961.
Sadek, M.A., Chen, Y. &
Liu, J. 2011. Simulating shear behavior of a sandy soil under different soil
conditions. Journal of Terramechanics 48(6): 451-458.
Shahangian, S. 2011. Variable
cohesion model for soil shear strength evaluation. In 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Toronto, Canada.
Shahrukh,
M., Soupios, P., Papadopoulos, N. & Sarris, A.
2012. Geophysical investigations at the istron archaeological site, Eastern Crete, Greece using seismic refraction and
electrical resistivity tomography. Journal
of Geophysics and Engineering 9(6): 749-760.
Shtivelman, V. 2003. Application
of shallow seismic methods to engineering, environmental and groundwater
investigations. Bollettino di Geofisica Teorica ed Applicata 44(3-4): 209-222.
Van Hoorde, M., Hermans, T., Dumont,
G. & Nguyen, F. 2017. 3D electrical resistivity tomography of karstified formations using cross-line measurements. Engineering Geology 220(13): 123-132.
Wei,
Y., Wu, X., Xia, J., Miller, G.A., Cai, C. & Guo, Z. 2019. The effect of
water content on the shear strength characteristics of granitic soils in South
China. Soil & Tillage Research 187: 50-59.
Whiteley, J.S., Chambers, J.E., Uhlemann, S., Boyd, J., Cimpoiasu,
M.O., Holmes, J.L., Inauen, C.M., Watlet,
A., Hawley-Sibbett, L.R., Sujitapan,
C., Swift, R.T. & Kendall, J.M. 2020. Landslide monitoring using seismic
refraction tomography - the
importance of incorporating topographic variations. Engineering Geology 268: 105525.
Willmott,
C.J. & Matsuura, K. 2006. On the use of dimensioned measures of error to
evaluate the performance of spatial interpolators. International Journal of Geographical Information Science 20(1): 89-102.
Wu,
Z., Niu, Q., Li, W., Lin, N.H. & Liu, S. 2018.
Ground stability evaluation of a coal-mining area: A case study of Yingshouyingzi mining area, China. Journal of Geophysics
and Engineering 15(5): 2252-2265.
Yeh,
H.F., Lin, H.I., Wu, C.S., Hsu, K.C., Lee, J.W. & Lee, C.H. 2015.
Electrical resistivity tomography applied to groundwater aquifer at downstream
of Chih-Ben Creek Basin, Taiwan. Environmental Earth Science Earth Science 73(8): 4681-4687.
Yokoi,
H. 1968. Relationship between soil cohesion and shear strength. Soil Science and Plant Nutrition 14(3):
89-93.
*Corresponding author; email: andersonbery@yahoo.com.my
|