Sains
Malaysiana 51(2)(2022): 451-460
http://doi.org/10.17576/jsm-2022-5102-10
Tropical
Soil Bacterial Diversity in Sabah, Malaysia
(Kepelbagaian
Bakteria Tanah Tropika di Sabah, Malaysia)
CHIN LAI MUN &
CLEMENTE MICHAEL WONG VUI LING*
Biotechnology Research Institute, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
Received: 15 September 2020/Accepted:
27 May 2021
ABSTRACT
Bacteria are an essential biological component of soil
function that plays fundamental roles in biogeochemical cycling, soil quality
improvement, habitat-shaping, and ecosystem conservation. It is therefore
important to have a good record of soil bacteria in the tropics in order to
monitor future changes that may occur due to global warming and other factors.
However, extremely limited data are available on the diversity of bacteria in
soils in some tropical Borneo regions such as Sabah, Malaysia. This research,
therefore, was undertaken to determine the bacterial diversity of soils from
various locations in Sabah, Malaysia. Ten soil samples (n=10) were collected
around Sabah. 16S rDNA of bacterial DNA extracted from soils were amplified and
analysed using the Denaturing Gradient Gel Electrophoresis (DGGE). A total of
100 dominant and well-defined DNA fragments observed in the DGGE gel were
extracted, sequenced, and aligned. The results indicated that 93 different
bacterial operational taxonomic units (OTUs) representing bacteria from 8
different phyla were present. The most abundant phyla in the analysed Sabah
soils were Proteobacteria followed by Acidobacteria, Firmicutes, Actinobacteria, Planctomycetes,
Verrucomicrobia, Chloroflexi, and Bacteroidetes. The
examined soils of Sabah and Peninsular Malaysia had similar dominant phyla in
general, except that the most dominant phylum in Peninsular Malaysia soils is
the Acidobacteria instead of Proteobacteria.
These baseline data generated from this work are important and can be used to
track bacterial diversity shifts due to soil or environmental changes in the
future.
Keywords: 16S rDNA; bacterial diversity; DGGE; Sabah; tropics
ABSTRAK
Bakteria adalah komponen biologi penting dalam fungsi tanah yang
memainkan peranan asas seperti pengitaran biogeokimia, peningkatan kualiti tanah, pembentukan habitat dan
pemuliharaan ekosistem. Oleh itu, rekod yang baik mengenai bakteria
tanah di kawasan tropika adalah penting untuk diperoleh bagi memantau perubahan
pada masa akan datang yang mungkin berlaku akibat pemanasan global dan faktor
lain. Walau bagaimanapun, jumlah data tentang kepelbagaian bakteria dalam tanah
dari kawasan tropika Borneo tertentu seperti Sabah, Malaysia adalah sangat
terhad. Oleh itu, projek ini
dijalankan untuk menentukan kepelbagaian bakteria tanah dari pelbagai lokasi di
Sabah, Malaysia. Sebanyak 10 sampel tanah (n=10) dikumpulkan dari
sekitar Sabah. 16S rDNA daripada DNA bakteria yang diekstrak diamplifikasikan
dan dianalisis menggunakan Penyahaslian
Gradien Gel Elektroforesis(DGGE). Sebanyak 100 fragmen DNA yang dominan
dan jelas dicerap dalam gel DGGE telah diekstrak, dijujuk dan dijajarkan.
Keputusan menunjukkan bahawa 93 unit operasi taksonomi
(OTU) bakteria yang berbeza mewakili bakteria daripada 8 filum yang berbeza
telah dijumpai. Filum yang paling banyak dalam tanah dari Sabah yang telah
dianalisis adalah Proteobakteria diikuti oleh Asidobakteria, Firmikutes,
Aktinobakteria, Planktomisetes, Verrukomikrobia, Klorofleksi dan Bakteroidetes. Tanah di Sabah dan Semenanjung Malaysia yang diperiksa mempunyai
filum dominan yang serupa pada umumnya, kecuali filum yang paling dominan dalam
tanah di Semenanjung Malaysia iaitu Asidobakteria dan bukannya Proteobakteria. Data asas yang
direkodkan dalam kajian ini adalah penting dan boleh digunakan untuk mengesan
perubahan kepelbagaian bakteria yang disebabkan oleh perubahan tanah atau
persekitaran pada masa akan datang.
Kata kunci: 16S rDN; DGGE; kepelbagaian bakteria; Sabah; tropika
REFERENCES
Ahmad, N., Johri, S., Abdin, M.Z. & Qazi, G.N. 2009.
Molecular characterization of bacterial population in the forest soil of
Kashmir, India. World Journal of
Microbiology and Biotechnology 25(1): 107-113.
Aislable,
J., Deslippe, J.R. & Dymond,
J. 2013. Soil microbes and their contribution to soil services. In Ecosystem Services in New Zealand–Conditions
and Trends, edited by Dymond, J.
Lincoln: Manaaki Whenua Press. pp. 143-161.
Bergmann, G.T., Bates, S.T., Eilers, K.G., Lauber,
C.L., Caporaso, J.G., Walters, W.A., Knight, R. & Fierer, N. 2011. The
under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry 43(7):
1450-1455.
Clark,
D.A. & Norris, P.R. 1996. Acidimicrobium
ferrooxidans gen. nov., sp. nov.: Mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142(4): 785-790.
Dunbar, J., Ticknor, L.O. & Kuske, C.R. 2000. Assessment
of microbial diversity in four southwestern United States soils by 16S rRNA
gene terminal restriction fragment analysis. Applied and Environmental Microbiology 66(7): 2943-2950.
Fierer, N. & Jackson, R.B. 2006 The diversity and
biogeography of soil bacterial communities. In Proceedings
of the National Academy of Sciences of the United States of America.
PNAS. pp. 626-631.
Foong, C.P., Ling, C.M.W.V. & González, M. 2010.
Metagenomic analyses of the dominant bacterial community in the Fildes
Peninsula, King George Island (South Shetland Islands). Polar Science 4(2): 263-273.
Gafan, G.P., Lucas, V.S., Roberts, G.J., Petrie, A., Wilson,
M. & Spratt, D.A. 2005. Statistical analyses of complex denaturing gradient
gel electrophoresis profiles. Journal of
Clinical Microbiology 43(8): 3971-3978.
Garrity,
G.M., Bell, J.A. & Lilburn, T.G. 2004. Taxonomic outline of the
prokaryotes. In Bergey’s Manual of
Systematic Bacteriology, edited by Whitman, W.B., Goodfellow, M., Kämpfer,
P., Busse, H., Trujillo, M.E., Ludwig, W. & Suzuki, K. New York:
Springer.
Hashim, G.M. 2003. Salt-affected soils
of Malaysia. In Proceedings of the Workshop on Soil Science in Malaysia towards 2020.
Malaysian Society of Soil Science.
Hayat, R., Ali, S.,
Amara, U., Khalid, R. & Ahmed, I. 2010. Soil beneficial bacteria and their
role in plant growth promotion: A review. Annals of Microbiology 60(4): 579-598.
Holmes, A.J., Bowyer, J., Holley, M.P., O'donoghue,
M., Montgomery, M. & Gillings, M.R. 2000. Diverse, yet-to-be-cultured
members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology 33(2):
111-120.
Hugenholtz, P., Goebel, B.M. & Pace, N.R. 1998.
Impact of culture-independent studies on the emerging phylogenetic view of
bacterial diversity. Journal of
Bacteriology 180(18): 4765-4774.
Janssen, P.H. 2006. Identifying the dominant soil bacterial
taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72(3): 1719-1728.
Jones,
R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R. & Fierer, N.
2009. A comprehensive survey of soil Acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal 3(4): 442-453.
Kerfahi, D., Tripathi, B.M., Dong, K., Go, R. & Adams,
J.M. 2016. Rainforest conversion to rubber plantation may not result in lower
soil diversity of bacteria, fungi, and nematodes. Microbial Ecology 72(2): 1-13.
Kim, M., Kim, W.S., Tripathi, B.M. & Adams, J. 2014.
Distinct bacterial communities dominate tropical and temperate zone leaf
litter. Microbial Ecology 67(4):
837-848.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J.,
Quast, C., Horn, M. & Glöckner, F.O. 2013. Evaluation of general 16S
ribosomal RNA gene PCR primers for classical and next generation sequencing-based
diversity studies. Nucleic Acids Research 41(1): 1-11.
Kobabe, S., Wagner, D. & Pfeiffer, E.M. 2004.
Characterisation of microbial community composition of a Siberian tundra soil
by fluorescence in situ hybridisation. FEMS Microbiology Ecology 50(1):
13-23.
Kuramae, E.E., Yergeau, E., Wong, L.C., Pijl, A.S., van
Veen, J.A. & Kowalchuk, G.A. 2012. Soil characteristics more strongly
influence soil bacterial communities than land-use type. FEMS Microbiology Ecology 79(1): 12-24.
Makhalanyane, T.P., Valverde, A., Gunnigle, E., Frossard,
A., Ramond, J.B. & Cowan, D.A. 2015. Microbial ecology of hot desert
edaphic systems. FEMS Microbiology
Reviews 39(2): 203-221.
Miyashita, N.T. 2015. Contrasting
soil bacterial community structure between phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and
temperate Japanese forests. Genes and
Genetic Systems 90(2): 61-77.
Rappé,
M.S. & Giovannoni, S.J. 2003. The uncultured microbial majority. Annual Reviews in Microbiology 57(1):
369-394.
Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S.
2007. Fifteen years of climate change manipulations alter soil microbial
communities in a subarctic heath ecosystem. Global
Change Biology 13(1): 28-39.
Roszak, D.B. & Colwell, R.R. 1987. Survival strategies
of bacteria in the natural environment. Microbiological Reviews 51(3): 365.
Schutter, M., Sandeno, J. & Dick, R. 2001. Seasonal,
soil type, and alternative management influences on microbial communities of
vegetable cropping systems. Biology and
Fertility of Soils 34(6): 397-410.
Teo, J.K.C. & Wong, C.M.V.L. 2014. Analyses of soil
bacterial diversity of the Schirmacher Oasis, Antarctica. Polar Biology 37(5): 631-640.
Tripathi, B.M., Lee-Cruz, L., Kim, M., Singh, D., Go, R.,
Shukor, N.A., Husni, M.H.A., Chun, J. & Adams, J.M. 2014. Spatial scaling
effects on soil bacterial communities in Malaysian tropical forests. Microbial Ecology 68(2): 247-258.
Vásquez-Dean, J., Maza, F., Morel, I., Pulgar, R. &
González, M. 2020. Microbial communities from arid environments on a global
scale. A systematic review. Biological
Research 53(1): 1-12.
Ward, N.L., Challacombe, J.F., Janssen,
P.H., Henrissat, B., Coutinho, P.M., Wu, M., Xie, G., Haft, D.H., Sait, M.,
Badger, J. & Barabote, R.D. 2009. Three genomes from the phylum Acidobacteria provide
insight into the lifestyles of these microorganisms in soils. Applied and Environmental
Microbiology 75(7): 2046-2056.
Woese, C.R. 1987.
Bacterial evolution. Microbiological Reviews 51(2): 221.
Xue, D., Yao, H.Y., Ge, D.Y. & Huang, C.Y. 2008. Soil
microbial community structure in diverse land use systems: A comparative study
using biolog, DGGE, and PLFA analyses. Pedosphere 18(5): 653-663.
Yergeau, E. & Kowalchuk, G.A. 2008. Responses of
Antarctic soil microbial communities and associated functions to temperature
and freeze-thaw cycle frequency. Environmental
Microbiology 10(9): 2223-2235.
*Corresponding
author; email: michaelw@ums.edu.my
|