Sains
Malaysiana 51(2)(2022): 507-517
http://doi.org/10.17576/jsm-2022-5102-15
Study of CO2 Adsorption Time for Carbonate Species and Linear CO2 Formations onto
Bimetallic CaO/Fe2O3 by Infrared Spectroscopy
(Kajian Masa Penjerapan
CO2 untuk Pembentukan Spesies Karbonat dan CO2 Linear
pada Dwilogam CaO/Fe2O3 oleh Spektroskopi Inframerah)
AZIZUL HAKIM LAHURI1*
& MOHD AMBAR YARMO2
1Department of Science and Technology, Universiti Putra
Malaysia Bintulu Kampus, P.O Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
2Department of Chemical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 23 December 2020/Accepted:
15 June 2021
ABSTRACT
The CO2 adsorption
time for carbonate species and linear CO2 formation onto bimetallic
CaO/Fe2O3 was investigated. The total basicity for CaO/Fe2O3 was 52.85 cm3g-1 which is located at a medium basic site
with maximum CO desorption temperature at 454 ℃. The CO2 adsorption
was conducted by using a fluidized bed reactor at 4, 12, 24 and 36 h. The
element distribution on the adsorbent showed carbonate formation through an
increment of the C element when the CO2 adsorption time was longer.
At 4 h of CO2 adsorption, the adsorbent
is capable of generating bicarbonate, monodentate
carbonate and bidentate carbonate species. The vibrational modes of the physisorbed linear CO2 for CO2 absorbed product at the
absorption region of
2240-2402 cm-1 was identified after 36 h of CO2 adsorption. The absorption bands were assigned according to the adjacent
CO2 molecule interactions giving formation of the core layer and
second layer linear CO2 on the CaO/Fe2O3 surfaces. The results of the present
work show that the addition of CaO on the Fe2O3 surfaces
enhanced the basic site of the adsorbent which could generate several carbonate
species and CO2 adsorbed products at ambient condition.
Keywords: Bimetallic; calcium oxide;
carbonate formation; CO2 capture; iron(III) oxide
ABSTRAK
Masa penjerapan CO2 bagi
pembentukan karbonat dan CO2 linear di atas dwilogam CaO/Fe2O3telah dikaji. Jumlah kebesan bagi CaO/Fe2O3 adalah sebanyak 52.85 cm3g-1 terletak di tapak bes medium dengan suhu penyahjerapan CO maksimum pada 454 ℃. Penjerapan CO2 dilakukan dengan menggunakan reaktor lapisan terbendalir selama 4, 12, 24 dan 36
jam. Taburan unsur pada penjerap telah menunjukkan bukti pembentukan karbonat
melalui peningkatan bagi unsur C apabila masa penjerapan CO2 semakin
lama. Selepas penjerapan CO2 selama 4 jam, penjerap berkeupayaan
dalam menghasilkan spesies bikarbonat, karbonat monodentat dan karbonat
bidentat. Mod getaran bagi CO2 linear yang terjerap secara fizikal
untuk hasil CO2 terjerap pada bahagian serapan 2240-2402 cm-1 adalah jelas dikenal pasti setelah 36 jam penjerapan CO2. Jalur
serapan ditentukan berdasarkan interaksi molekul CO2 berdekatan yang
memberikan pembentukan lapisan teras dan lapisan kedua CO2 linear
pada permukaan CaO/Fe2O3. Hasil kajian ini menunjukkan
penambahan CaO pada permukaan Fe2O3 telah memperbaiki
tapak bes bagi penjerap yang membolehkan pembentukan spesies karbonat dan CO2 linear pada keadaan ambien.
Kata kunci: Dwilogam; ferum(III) oksida; kalsium
oksida; pembentukan karbonat; penjerapan CO2
REFERENCES
Abanades, J.C. 2002. The maximum
capture efficiency of CO2 using a carbonation/calcination cycle of
CaO/CaCO3. Chemical
Engineering Journal 90(3): 303-306.
Abu Tahari, M.N., Lahuri, A.H.,
Ghazali, Z., Samidin, S., Sulhadi, S.S., Dzakaria, N. & Yarmo, M.A. 2020.
Application of octadecylamine-based adsorbent on carbon dioxide capture. Materials
Science Forum 1010: 367-372.
Abu Tahari, M.N., Hakim, A.,
Marliza, T.S., Mohd, N.H. & Yarmo, M.A. 2017a. XRD and CO2 adsorption studies of modified silica gel with octadecylamine. Materials Science Forum 888: 529-533.
Abu Tahari, M.N., Hakim, A.,
Marliza, T.S. & Yarmo, M.A. 2017b. Carbon
dioxide sorption by tetradecylamine supported on silica gel. Malaysian
Journal of Analytical Sciences 21(4): 921-927.
Abu Tahari, M.N., Hakim, A., Tengku
Azmi, T.S.M., Wan Isahak, W.N.R., Hisham, M.W.M. & Yarmo, M.A. 2016.
Studies on adsorption-desorption of CO2 by long chain fatty amine
supported on SiO2. Materials Science Forum 840: 343-347.
Abu Tahari, M.N., Hakim, A., Hisham,
M.W.M. & Yarmo, M.A. 2015a. Modification of porous materials by saturated
fatty amine as CO2 capturer. International
Journal of Chemical Engineering and Applications 6(6): 395-400.
Abu Tahari, M.N., Hakim, A., Wan
Isahak, W.N.R., Samad, W.Z. & Yarmo, M.A. 2015b. Adsorption of CO2 on octadecylamine-impregnated on SiO2: Physical and chemical
interaction studies. Advanced Materials Research 1087:
137-141.
Austin, N., Butina, B. &
Mpourmpakis, G. 2016. CO2 activation on bimetallic CuNi
nanoparticles. Progress in Natural
Science: Materials International 26(5): 487-492.
Bagherisereshki, E., Tran, J., Lei,
F.Q. & AuYeung, N. 2018. Investigation into SrO/SrCO3 for high
temperature thermochemical energy storage. Solar
Energy 160: 85-93.
Bakiz, B., Guinneton, F., Arab, M.,
Benlhachemi, A., Villain, S., Satre, P. & Gavarri, J.R. 2010. Carbonatation
and decarbonatation kinetics in the La2O3-La2O2CO3 system under CO2 gas flows. Advances in Materials Science and
Engineering 2010: 360597.
Baltrusaitis, J., Schuttlefield, J.,
Zeitler, E. & Grassian, V.H. 2011. Carbon dioxide adsorption on oxide
nanoparticle surfaces. Chemical
Engineering Journal 170(2-3): 471-481.
Bargar, J.R., Kubicki, J.D.,
Reitmeyer, R. & Davis, J.A. 2005. ATR-FTIR spectroscopic characterization
of coexisting carbonate surface complexes on hematite. Geochimica et Cosmochimica Acta 69(6): 1527-1542.
Barker, R. 1973. The reversibility of the reaction
CaCO3 ⇄ CaO+CO2. Journal of
Applied Chemistry and Biotechnology 23(10): 733-742.
Barker, S. & Ridgwell, A. 2012. Ocean
acidification. Nature Education
Knowledge 3(10): 21.
Bhagiyalakshmi, M., Lee, J.Y. &
Jang, H.T. 2010. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of
Greenhouse Gas Control 4(1): 51-56.
Bishop, J.L., Murad, E., Madejova,
J., Komadel, P., Wagner, U. & Scheinost, A.C. 1997 Visible, Mössbauer and infrared spectroscopy of
dioctahedral smectites: Structural analyses of the Fe-bearing smectites sampor,
SWy-1 and SWa-1. In Proceedings of the
11th International Clay
Conference.
Bui, M., Adjiman, C.S., Bardow, A.,
Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A.,
Hackett, L.A. & Hallett, J.P. 2018. Carbon capture and storage (CCS): The
way forward. Energy & Environmental
Science 11(5): 1062-1176.
Burghaus, U. 2014. Surface chemistry
of CO2 - adsorption of carbon dioxide on clean surfaces at ultrahigh
vacuum. Progress in Surface Science 89(2): 161-217.
Chanapattharapol, K.C., Krachuamram,
S. & Youngme, S. 2017. Study of CO2 adsorption on iron oxide
doped MCM-41. Microporous and Mesoporous
Materials 245: 8-15.
Davis,
R., Walsh, J.F., Muryn, C.A., Thornton, G., Dhanak, V.R. & Prince, K.C.
1993. The orientation of formate and carbonate on ZnO(1010). Surface Science 298(1): L196-L202.
Di Cosimo, J.I., Diez, V.K., Xu, M.,
Iglesia, E. & Apesteguia, R. 1998. Structure and surface and catalytic
properties of Mg-Al basic oxides. Journal
of Catalysis 178(2): 499-510.
Ferretto, L. & Glisenti, A.
2002. Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A: Chemical 187(1): 119-128.
Galhotra, P. 2010. Carbon dioxide
adsorption on nanomaterials. Carbon dioxide adsorption on nanomaterials.
Dissertation, University of Iowa (Unpublished).
Gregoire, G., Velasquez, J. &
Duncan, M.A. 2001. Infrared photodissociation spectroscopy of small Fe+-(CO2)n and Fe+-(CO2)nAr cluster. Chemical Physics Letters 349(5-6): 451-457.
Hakim, A., Marliza, T.S., Abu
Tahari, M.N., Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016a. Studies on
CO2 adsorption and desorption properties from various types of iron
oxides (FeO, Fe2O3, and Fe3O4). Industrial & Engineering Chemistry
Research 55(29): 7888-7897.
Hakim, A., Marliza, T.S., Abu
Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016b. Development
of α-Fe2O3 as adsorbent and its effect on CO2 capture. Materials Science Forum 840(2016): 421-426.
Hakim, A., Yarmo, M.A., Marliza,
T.S., Abu Tahari, M.N., Samad, W.Z., Yusop, M.R., Hisham, M.W.M. &
Dzakaria, N. 2016c. The influence of calcination temperature on iron oxide
(α-Fe2O3) towards CO2 adsorption prepared
by simple mixing method. Malaysian
Journal of Analytical Sciences 20(6): 1286-1298.
Hakim, A., Abu Tahari, M.N.,
Marliza, T.S., Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A.
2015a. Study of CO2 adsorption and desorption on activated carbon
supported iron oxide by temperature programmed desorption. Jurnal Teknologi 77(33): 75-84.
Hakim, A., Wan Isahak, W.N.R., Abu
Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015b. Temperature
programmed desorption of carbon dioxide for activated carbon supported nickel
oxide: The adsorption and desorption studies. Advanced Materials Research 1087:
45-49.
Hare, A., Evans, W., Pocock, K.,
Weeke, C. & Gimenez, I. 2020. Contrasting marine carbonate systems in two
fjords in British Columbia, Canada: Seawater buffering capacity and the
response to anthropogenic CO2 invasion. PLoS ONE 15(9): e0238432.
Hassen Mohammed, S.M. 2018.
Characterization of magnetite and hematite using infrared spectroscopy. Journal of Engineering Sciences &
Information Technology 2(1): 38-44.
Henderson, M.A., Epling, W.S.,
Perkins, C.L., Peden, C.H. & Diebold, U. 1999. Interaction of molecular
oxygen with vacuum-annealed TiO2 (110) surface: Molecular and dissociative
channels. Journal of Physical Chemistry B 103(25): 5328-5337.
Heo, Y.J. & Park, S.J. 2017.
Facile synthesis of MgO modified carbon adsorbents with microwave-assisted
methods: Effect of MgO particles and porosities on CO2 capture. Scientific
Reports 7(1): 1-9.
Hlaing, N.N., Sreekantan, S.,
Hinode, H., Kurniawan, W., Thant, A.A., Othman, R., Mohamed, A.R. & Salime,
C. 2016. Effect of carbonation temperature on CO2 adsorption
capacity of CaO derived from micro/nanostructured aragonite CaCO3. AIP Conference Proceedings 1733(1):
020023.
Ho, T.H., Howes, T. & Bhandari,
B.R. 2014. Encapsulation of gases in powder solid matrices and their
applications: A review. Powder Technology 259: 87-108.
Hofmeister, A.M., Keppel, E. & Speck, A.K. 2003.
Absorption and reflection infrared spectra of MgO and other diatomic compounds. Monthly Notices Royal Astronomy Society 345(1): 16-38.
Horiuchi, T., Hidaka, H., Fukui, T.,
Kubo, Y., Horioa, M., Suzukia, K. & Mori, T. 1998. Effect of added basic
metal oxides on CO2 adsorption on alumina at elevated temperatures. Applied Catalysis A: General 167(2):
195-202.
Hosakun, Y., Halász, K., Horváth,
M., Csóka, L. & Djoković, V. 2017. ATR-FTIR study of the interaction
of CO2 with bacterial cellulose-based membranes. Chemical Engineering Journal 324: 83-92.
Ismail, H.M., Cadenhead, D.A. &
Zaki, M.I. 1997. Surface reactivity of iron oxide pigmentary powders toward
atmospheric components: XPS, FESEM, and gravimetry of CO and CO2 adsorption. Journal of Colloid and
Interface Science 194(2): 482-488.
Jensen, M.B., Pettersson, L.G.M.,
Swang, O. & Olsbye, U. 2005. CO2 sorption on MgO and CaO
surfaces: A comparative quantum chemical cluster study. Journal of Physical Chemistry B 109(35): 16774-16781.
Kendix, E.L. 2009. Transmission and
reflection (ATR) far-infrared spectroscopy applied in the analysis of cultural
heritage materials. Thesis. Universita di Bologna (Unpublished).
Kumar, S., Saxena, S.K., Drozd, V.
& Durygin, A. 2015. An experimental investigation of mesoporous MgO as a
potential pre-combustion CO2 sorbent. Materials for Renewable and Sustainable Energy 4(2): 1-8.
Lahuri, A.H., Adnan, R., Mansor,
M.H., Waheed Tajudeen, N.F. & Nordin, N. 2020a. Adsorption kinetics for
carbon dioxide capture using bismuth(III) oxide impregnated on activated
carbon. Malaysian Journal of Chemistry 22(1):
33-46.
Lahuri, A.H., Michael Ling, N.K.,
Abdul Rahim, A. & Nordin, N. 2020b. Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica 67(2): 570-580.
Lahuri, A.H., Yarmo, M.A., Abu
Tahari, M.N., Marliza, T.S., Tengku Saharuddin, T.S., Mark Lee, W.F. &
Dzakaria, N. 2020c. Comparative adsorption isotherm for beryllium oxide/iron
(III) oxide toward CO2 adsorption and desorption studies. Materials Science Forum 1010: 361-366.
Lahuri, A.H., Yarmo, M.A., Marliza,
T.S., Abu Tahari, M.N., Samad, W.Z., Dzakaria, N. & Yusop, M.R. 2017.
Carbon dioxide adsorption and desorption study using bimetallic calcium oxide
impregnated on iron(III) oxide. Materials
Science Forum 888: 479-484.
Lefevre, G. 2004. In situ Fourier-transform infrared
spectroscopy studies of inorganic ions adsorption on metal oxides and
hydroxides. Advances in Colloid and
Interface Science 107(2-3): 109-123.
Luis, P. 2016. Use of
monoethanolamine (MEA) for CO2 capture in a global scenario:
Consequences and alternatives. Desalination 380: 93-99.
Lv, P., Almerida, G. & Perre, P.
2015. TGA-FTIR analysis of torrefaction of lignocellulosic components
(cellulose, xylan, lignin) in isothermal conditions over a wide range of time
durations. BioResources 10(3):
4239-4251.
Manovic, V., Wu, Y.H., He, I. &
Anthony, E.J. 2011. Core-in-shell CaO/CuO-based composite for CO2 capture. Industrial & Engineering
Chemistry Research 50(22): 12384-12391.
Naeem, M.A., Armutlulu, A., Imtiaz,
Q. & Muller, C.R. 2017. CaO-based CO2 sorbents effectively
stabilized by metal oxides. ChemPhysChem 18(22): 3280-3285.
Okawa, Y. & Tanaka, K. 1995. STM
investigation of the reaction of Ag-O added rows with CO2 on a
Ag(110) surface. Surface Science 344(3): L1207-L1212.
Pacchioni, G., Ricart, J.M. &
Illas, F. 1994. Ab initio cluster
model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO(100) surfaces. A theoretical measure of oxide
basicity. Journal of American Chemical
Society 116(22): 10152-10158.
Roger, B.R. & Girdler Corp.
1930. Process for separating acidic gases. U.S. Patent 1,783,901.
Rosynek, M.P. & Magnuson, D.T.
1977. Infrared study of carbon dioxide adsorption on lanthanum sesquioxide and
trihydroxide. Journal of Catalysis 48(1-3): 417-421.
Salvador, C., Lu, D., Anthony, E.J.
& Abanades, J.C. 2003. Enhancement of CaO for CO2 capture in an
FBC environment. Chemical Engineering
Journal 96(1-3): 187-195.
Sawada, Y., Yamaguchi, J., Sakurai,
O., Uematsu, K., Mizutani, N. & Kato, M. 1979. Thermal decomposition of
basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochimica Acta 32(1-2): 277-291.
Silaban, A. & Harrison, D.P.
1995. High temperature capture of carbon dioxide: Characteristics of the
reversible reaction between CaO(s)
and CO2(g). Chemical
Engineering Communications 137(1): 177-190.
Slostowski, C., Marre, S., Dagault,
P., Babotb, O., Toupanceb, T. & Aymonier, C. 2017. CeO2 nanopowders as solid sorbents for efficient CO2 capture/release
processes. Journal of CO₂
Utilization 20: 52-58.
Su, C.M. & Suarez, D.L. 1997. In situ infrared speciation of adsorbed
carbonate on aluminium and iron oxides. Clays
and Clay Minerals 45(6): 814-825.
Sun, Z., Wang, J., Du, W., Lu, G.,
Li, P., Song, X. & Yu, J. 2016. Density functional theory study on the
thermodynamics and mechanism of carbon dioxide capture by CaO and CaO
regeneration. RSC Advances 6(45):
39460-39468.
Takahashi, H., Yuki, K. & Nitta,
T. 2002. Chemical modification of rutile TiO2(1 1 0) surface by ab initio calculations for the purpose
of CO2 adsorption. Fluid Phase
Equilibria 194: 153-160.
Tang,
Y., Liu, H., Ren, H.M., Cheng, Q.T., Cui, Y. & Zhang, J. 2019. Development
KCl/CaO as a catalyst for biodiesel production by tri-component coupling
transesterification. Environmental
Progress & Sustainable Energy 38(2): 647-653.
Taylor, R.M. 1980. Formation and properties
of Fe (II) Fe (III) hydroxyl-carbonate and its possible significance in soil
formation. Clay Minerals 15(4):
369-382.
Tlili, M.M., Ben Amor, M.,
Gabrielli, C., Joiret, S., Maurin, G. & Rousseau, P. 2003. Study of
electrochemical deposition of CaCO3 by in situ raman spectroscopy. Journal
of the Electrochemical Society 150(7): C485-C493.
Vesecky, S.M., Xu, X.P. &
Goodman, D.W. 1994. Infrared study of CO on NiO(100). Journal of Vacuum Science & Technology A 12(4): 2114-2118.
Walker, N.R., Walters, R.S. &
Duncan, M.A. 2004a. Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. Journal of Chemical Physics 120(21): 10037-10045.
Walker, N.R., Walters, R.S.,
Grieves, G.A. & Duncan, M.A. 2004b. Growth dynamics and intracluster reactions
in Ni+(CO2)n complexes via infrared
spectroscopy. Journal of Chemical Physics 121(21): 10498-10507.
Wan Isahak, W.N.R., Che Ramli, Z.A.,
Lahuri, A.H., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015. Enhancement
of CO2 capture using CuO nanoparticles supported on green activated
carbon. Advanced Materials Research 1087: 111-115.
Wang, Y.M., Kovacik, R., Meyer, B.,
Kotsis, K., Stodt, D., Staemmler, V., Qiu, H.S., Traeger, F., Langenberg, D.,
Muhler, M. & Woll, C. 2007. CO2 activation by ZnO through the
formation of an unusual tridentate surface carbonate. Angewandte Chemie International Edition 46(29): 5624-5627.
Whateley, T.L. 1971. Carbonate
species and not polywater formed on magnesium oxide. Nature Physical Science 231(25): 178-179.
Xing, X.P., Wang, G.J., Wang, C.X.
& Zhou, M.F. 2013. Infrared photodissociation spectroscopy of Ti+(CO2)2Ar
and Ti+(CO2)n (n=3-7) complexes. Chinese
Journal of Chemical Physics 26(6): 687-693.
Yang, C.W. & Woll, C. 2017. IR spectroscopy applied
to metal oxide surfaces: Adsorbate vibrations and beyond. Advances in Physics X2(2): 373-408.
Yoshikawa, K., Sato, H., Kaneeda, M.
& Kondo, J.N. 2014. Synthesis and analysis of CO2 adsorbents
based on cerium oxide. Journal of CO2 Utilization 8: 34-38.
Yuan, Z.H. & Eden, M.R. 2016.
Toward the development and deployment of large-scale carbon dioxide capture and
conversion processes. Industrial &
Engineering Chemistry Research 55(12): 3383-3419.
Zhang, Z.P., Rong, M.Z., Zhang, M.Q.
& Yuan, C. 2013. Alkoxyamine with reduced homolysis temperature and its
application in repeated autonomous self-healing of stiff polymer. Polymer Chemistry 4(17): 4648-4654.
*Corresponding author; email: azizulhakim@upm.edu.my
|