Sains Malaysiana 51(2)(2022): 507-517

http://doi.org/10.17576/jsm-2022-5102-15

 

Study of CO2 Adsorption Time for Carbonate Species and Linear CO2 Formations onto Bimetallic CaO/Fe2O3 by Infrared Spectroscopy

(Kajian Masa Penjerapan CO2 untuk Pembentukan Spesies Karbonat dan CO2 Linear pada Dwilogam CaO/Fe2O3 oleh Spektroskopi Inframerah)

 

AZIZUL HAKIM LAHURI1* & MOHD AMBAR YARMO2

 

1Department of Science and Technology, Universiti Putra Malaysia Bintulu Kampus, P.O Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia

 

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 23 December 2020/Accepted: 15 June 2021

 

ABSTRACT

The CO2 adsorption time for carbonate species and linear CO2 formation onto bimetallic CaO/Fe2O3 was investigated. The total basicity for CaO/Fe2O3 was 52.85 cm3g-1 which is located at a medium basic site with maximum CO desorption temperature at 454 . The CO2 adsorption was conducted by using a fluidized bed reactor at 4, 12, 24 and 36 h. The element distribution on the adsorbent showed carbonate formation through an increment of the C element when the CO2 adsorption time was longer. At 4 h of CO2 adsorption, the adsorbent is capable of generating bicarbonate, monodentate carbonate and bidentate carbonate species. The vibrational modes of the physisorbed linear CO2 for CO2 absorbed product at the absorption region of 2240-2402 cm-1 was identified after 36 h of CO2 adsorption. The absorption bands were assigned according to the adjacent CO2 molecule interactions giving formation of the core layer and second layer linear CO2 on the CaO/Fe2O3 surfaces. The results of the present work show that the addition of CaO on the Fe2O3 surfaces enhanced the basic site of the adsorbent which could generate several carbonate species and CO2 adsorbed products at ambient condition.

 

Keywords: Bimetallic; calcium oxide; carbonate formation; CO2 capture; iron(III) oxide

 

ABSTRAK

Masa penjerapan CO2 bagi pembentukan karbonat dan CO2 linear di atas dwilogam CaO/Fe2O3telah dikaji. Jumlah kebesan bagi CaO/Fe2O3 adalah sebanyak 52.85 cm3g-1 terletak di tapak bes medium dengan suhu penyahjerapan CO maksimum pada 454 . Penjerapan CO2 dilakukan dengan menggunakan reaktor lapisan terbendalir selama 4, 12, 24 dan 36 jam. Taburan unsur pada penjerap telah menunjukkan bukti pembentukan karbonat melalui peningkatan bagi unsur C apabila masa penjerapan CO2 semakin lama. Selepas penjerapan CO2 selama 4 jam, penjerap berkeupayaan dalam menghasilkan spesies bikarbonat, karbonat monodentat dan karbonat bidentat. Mod getaran bagi CO2 linear yang terjerap secara fizikal untuk hasil CO2 terjerap pada bahagian serapan 2240-2402 cm-1 adalah jelas dikenal pasti setelah 36 jam penjerapan CO2. Jalur serapan ditentukan berdasarkan interaksi molekul CO2 berdekatan yang memberikan pembentukan lapisan teras dan lapisan kedua CO2 linear pada permukaan CaO/Fe2O3. Hasil kajian ini menunjukkan penambahan CaO pada permukaan Fe2O3 telah memperbaiki tapak bes bagi penjerap yang membolehkan pembentukan spesies karbonat dan CO2 linear pada keadaan ambien.

 

Kata kunci: Dwilogam; ferum(III) oksida; kalsium oksida; pembentukan karbonat; penjerapan CO2

 

REFERENCES

Abanades, J.C. 2002. The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chemical Engineering Journal 90(3): 303-306.

Abu Tahari, M.N., Lahuri, A.H., Ghazali, Z., Samidin, S., Sulhadi, S.S., Dzakaria, N. & Yarmo, M.A. 2020. Application of octadecylamine-based adsorbent on carbon dioxide capture. Materials Science Forum 1010: 367-372.

Abu Tahari, M.N., Hakim, A., Marliza, T.S., Mohd, N.H. & Yarmo, M.A. 2017a. XRD and CO2 adsorption studies of modified silica gel with octadecylamine. Materials Science Forum 888: 529-533.

Abu Tahari, M.N., Hakim, A., Marliza, T.S. & Yarmo, M.A. 2017b. Carbon dioxide sorption by tetradecylamine supported on silica gel. Malaysian Journal of Analytical Sciences 21(4): 921-927.

Abu Tahari, M.N., Hakim, A., Tengku Azmi, T.S.M., Wan Isahak, W.N.R., Hisham, M.W.M. & Yarmo, M.A. 2016. Studies on adsorption-desorption of CO2 by long chain fatty amine supported on SiO2. Materials Science Forum 840: 343-347.

Abu Tahari, M.N., Hakim, A., Hisham, M.W.M. & Yarmo, M.A. 2015a. Modification of porous materials by saturated fatty amine as CO2 capturer. International Journal of Chemical Engineering and Applications 6(6): 395-400.

Abu Tahari, M.N., Hakim, A., Wan Isahak, W.N.R., Samad, W.Z. & Yarmo, M.A. 2015b. Adsorption of CO2 on octadecylamine-impregnated on SiO2: Physical and chemical interaction studies. Advanced Materials Research 1087: 137-141.

Austin, N., Butina, B. & Mpourmpakis, G. 2016. CO2 activation on bimetallic CuNi nanoparticles. Progress in Natural Science: Materials International 26(5): 487-492.

Bagherisereshki, E., Tran, J., Lei, F.Q. & AuYeung, N. 2018. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage. Solar Energy 160: 85-93.

Bakiz, B., Guinneton, F., Arab, M., Benlhachemi, A., Villain, S., Satre, P. & Gavarri, J.R. 2010. Carbonatation and decarbonatation kinetics in the La2O3-La2O2CO3 system under CO2 gas flows. Advances in Materials Science and Engineering 2010: 360597.

Baltrusaitis, J., Schuttlefield, J., Zeitler, E. & Grassian, V.H. 2011. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal 170(2-3): 471-481.

Bargar, J.R., Kubicki, J.D., Reitmeyer, R. & Davis, J.A. 2005. ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochimica et Cosmochimica Acta 69(6): 1527-1542.

Barker, R. 1973. The reversibility of the reaction CaCO3  CaO+CO2. Journal of Applied Chemistry and Biotechnology 23(10): 733-742.

Barker, S. & Ridgwell, A. 2012. Ocean acidification. Nature Education Knowledge 3(10): 21.

Bhagiyalakshmi, M., Lee, J.Y. & Jang, H.T. 2010. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control 4(1): 51-56.

Bishop, J.L., Murad, E., Madejova, J., Komadel, P., Wagner, U. & Scheinost, A.C. 1997 Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites sampor, SWy-1 and SWa-1. In Proceedings of the 11th International Clay Conference.

Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A. & Hallett, J.P. 2018. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science 11(5): 1062-1176.

Burghaus, U. 2014. Surface chemistry of CO2 - adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum. Progress in Surface Science 89(2): 161-217.

Chanapattharapol, K.C., Krachuamram, S. & Youngme, S. 2017. Study of CO2 adsorption on iron oxide doped MCM-41. Microporous and Mesoporous Materials 245: 8-15.

Davis, R., Walsh, J.F., Muryn, C.A., Thornton, G., Dhanak, V.R. & Prince, K.C. 1993. The orientation of formate and carbonate on ZnO(1010). Surface Science 298(1): L196-L202.

Di Cosimo, J.I., Diez, V.K., Xu, M., Iglesia, E. & Apesteguia, R. 1998. Structure and surface and catalytic properties of Mg-Al basic oxides. Journal of Catalysis 178(2): 499-510.

Ferretto, L. & Glisenti, A. 2002. Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A: Chemical 187(1): 119-128.

Galhotra, P. 2010. Carbon dioxide adsorption on nanomaterials. Carbon dioxide adsorption on nanomaterials. Dissertation, University of Iowa (Unpublished).

Gregoire, G., Velasquez, J. & Duncan, M.A. 2001. Infrared photodissociation spectroscopy of small Fe+-(CO2)n and Fe+-(CO2)nAr cluster. Chemical Physics Letters 349(5-6): 451-457.

Hakim, A., Marliza, T.S., Abu Tahari, M.N., Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016a. Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4). Industrial & Engineering Chemistry Research 55(29): 7888-7897.

Hakim, A., Marliza, T.S., Abu Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016b. Development of α-Fe2O3 as adsorbent and its effect on CO2 capture. Materials Science Forum 840(2016): 421-426.

Hakim, A., Yarmo, M.A., Marliza, T.S., Abu Tahari, M.N., Samad, W.Z., Yusop, M.R., Hisham, M.W.M. & Dzakaria, N. 2016c. The influence of calcination temperature on iron oxide (α-Fe2O3) towards CO2 adsorption prepared by simple mixing method. Malaysian Journal of Analytical Sciences 20(6): 1286-1298.

Hakim, A., Abu Tahari, M.N., Marliza, T.S., Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015a. Study of CO2 adsorption and desorption on activated carbon supported iron oxide by temperature programmed desorption. Jurnal Teknologi 77(33): 75-84.

Hakim, A., Wan Isahak, W.N.R., Abu Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015b. Temperature programmed desorption of carbon dioxide for activated carbon supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research 1087: 45-49.

Hare, A., Evans, W., Pocock, K., Weeke, C. & Gimenez, I. 2020. Contrasting marine carbonate systems in two fjords in British Columbia, Canada: Seawater buffering capacity and the response to anthropogenic CO2 invasion. PLoS ONE 15(9): e0238432.

Hassen Mohammed, S.M. 2018. Characterization of magnetite and hematite using infrared spectroscopy. Journal of Engineering Sciences & Information Technology 2(1): 38-44.

Henderson, M.A., Epling, W.S., Perkins, C.L., Peden, C.H. & Diebold, U. 1999. Interaction of molecular oxygen with vacuum-annealed TiO2 (110) surface: Molecular and dissociative channels. Journal of Physical Chemistry B 103(25): 5328-5337.

Heo, Y.J. & Park, S.J. 2017. Facile synthesis of MgO modified carbon adsorbents with microwave-assisted methods: Effect of MgO particles and porosities on CO2 capture. Scientific Reports 7(1): 1-9.

Hlaing, N.N., Sreekantan, S., Hinode, H., Kurniawan, W., Thant, A.A., Othman, R., Mohamed, A.R. & Salime, C. 2016. Effect of carbonation temperature on CO2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO3. AIP Conference Proceedings 1733(1): 020023.

Ho, T.H., Howes, T. & Bhandari, B.R. 2014. Encapsulation of gases in powder solid matrices and their applications: A review. Powder Technology 259: 87-108.

Hofmeister, A.M., Keppel, E. & Speck, A.K. 2003. Absorption and reflection infrared spectra of MgO and other diatomic compounds. Monthly Notices Royal Astronomy Society 345(1): 16-38.

Horiuchi, T., Hidaka, H., Fukui, T., Kubo, Y., Horioa, M., Suzukia, K. & Mori, T. 1998. Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures. Applied Catalysis A: General 167(2): 195-202.

Hosakun, Y., Halász, K., Horváth, M., Csóka, L. & Djoković, V. 2017. ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes. Chemical Engineering Journal 324: 83-92.

Ismail, H.M., Cadenhead, D.A. & Zaki, M.I. 1997. Surface reactivity of iron oxide pigmentary powders toward atmospheric components: XPS, FESEM, and gravimetry of CO and CO2 adsorption. Journal of Colloid and Interface Science 194(2): 482-488.

Jensen, M.B., Pettersson, L.G.M., Swang, O. & Olsbye, U. 2005. CO2 sorption on MgO and CaO surfaces: A comparative quantum chemical cluster study. Journal of Physical Chemistry B 109(35): 16774-16781.

Kendix, E.L. 2009. Transmission and reflection (ATR) far-infrared spectroscopy applied in the analysis of cultural heritage materials. Thesis. Universita di Bologna (Unpublished).

Kumar, S., Saxena, S.K., Drozd, V. & Durygin, A. 2015. An experimental investigation of mesoporous MgO as a potential pre-combustion CO2 sorbent. Materials for Renewable and Sustainable Energy 4(2): 1-8.

Lahuri, A.H., Adnan, R., Mansor, M.H., Waheed Tajudeen, N.F. & Nordin, N. 2020a. Adsorption kinetics for carbon dioxide capture using bismuth(III) oxide impregnated on activated carbon. Malaysian Journal of Chemistry 22(1): 33-46.

Lahuri, A.H., Michael Ling, N.K., Abdul Rahim, A. & Nordin, N. 2020b. Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica 67(2): 570-580.

Lahuri, A.H., Yarmo, M.A., Abu Tahari, M.N., Marliza, T.S., Tengku Saharuddin, T.S., Mark Lee, W.F. & Dzakaria, N. 2020c. Comparative adsorption isotherm for beryllium oxide/iron (III) oxide toward CO2 adsorption and desorption studies. Materials Science Forum 1010: 361-366.

Lahuri, A.H., Yarmo, M.A., Marliza, T.S., Abu Tahari, M.N., Samad, W.Z., Dzakaria, N. & Yusop, M.R. 2017. Carbon dioxide adsorption and desorption study using bimetallic calcium oxide impregnated on iron(III) oxide. Materials Science Forum 888: 479-484.

Lefevre, G. 2004. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Advances in Colloid and Interface Science 107(2-3): 109-123.

Luis, P. 2016. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 380: 93-99.

Lv, P., Almerida, G. & Perre, P. 2015. TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations. BioResources 10(3): 4239-4251.

Manovic, V., Wu, Y.H., He, I. & Anthony, E.J. 2011. Core-in-shell CaO/CuO-based composite for CO2 capture. Industrial & Engineering Chemistry Research 50(22): 12384-12391.

Naeem, M.A., Armutlulu, A., Imtiaz, Q. & Muller, C.R. 2017. CaO-based CO2 sorbents effectively stabilized by metal oxides. ChemPhysChem 18(22): 3280-3285.

Okawa, Y. & Tanaka, K. 1995. STM investigation of the reaction of Ag-O added rows with CO2 on a Ag(110) surface. Surface Science 344(3): L1207-L1212.

Pacchioni, G., Ricart, J.M. & Illas, F. 1994. Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO(100) surfaces. A theoretical measure of oxide basicity. Journal of American Chemical Society 116(22): 10152-10158.

Roger, B.R. & Girdler Corp. 1930. Process for separating acidic gases. U.S. Patent 1,783,901.

Rosynek, M.P. & Magnuson, D.T. 1977. Infrared study of carbon dioxide adsorption on lanthanum sesquioxide and trihydroxide. Journal of Catalysis 48(1-3): 417-421.

Salvador, C., Lu, D., Anthony, E.J. & Abanades, J.C. 2003. Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal 96(1-3): 187-195.

Sawada, Y., Yamaguchi, J., Sakurai, O., Uematsu, K., Mizutani, N. & Kato, M. 1979. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmoshpheres. Thermochimica Acta 32(1-2): 277-291.

Silaban, A. & Harrison, D.P. 1995. High temperature capture of carbon dioxide: Characteristics of the reversible reaction between CaO(s) and CO2(g). Chemical Engineering Communications 137(1): 177-190.

Slostowski, C., Marre, S., Dagault, P., Babotb, O., Toupanceb, T. & Aymonier, C. 2017. CeO2 nanopowders as solid sorbents for efficient CO2 capture/release processes. Journal of CO₂ Utilization 20: 52-58.

Su, C.M. & Suarez, D.L. 1997. In situ infrared speciation of adsorbed carbonate on aluminium and iron oxides. Clays and Clay Minerals 45(6): 814-825.

Sun, Z., Wang, J., Du, W., Lu, G., Li, P., Song, X. & Yu, J. 2016. Density functional theory study on the thermodynamics and mechanism of carbon dioxide capture by CaO and CaO regeneration. RSC Advances 6(45): 39460-39468.

Takahashi, H., Yuki, K. & Nitta, T. 2002. Chemical modification of rutile TiO2(1 1 0) surface by ab initio calculations for the purpose of CO2 adsorption. Fluid Phase Equilibria 194: 153-160.

Tang, Y., Liu, H., Ren, H.M., Cheng, Q.T., Cui, Y. & Zhang, J. 2019. Development KCl/CaO as a catalyst for biodiesel production by tri-component coupling transesterification. Environmental Progress & Sustainable Energy 38(2): 647-653.

Taylor, R.M. 1980. Formation and properties of Fe (II) Fe (III) hydroxyl-carbonate and its possible significance in soil formation. Clay Minerals 15(4): 369-382.

Tlili, M.M., Ben Amor, M., Gabrielli, C., Joiret, S., Maurin, G. & Rousseau, P. 2003. Study of electrochemical deposition of CaCO3 by in situ raman spectroscopy. Journal of the Electrochemical Society 150(7): C485-C493.

Vesecky, S.M., Xu, X.P. & Goodman, D.W. 1994. Infrared study of CO on NiO(100). Journal of Vacuum Science & Technology A 12(4): 2114-2118.

Walker, N.R., Walters, R.S. & Duncan, M.A. 2004a. Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. Journal of Chemical Physics 120(21): 10037-10045.

Walker, N.R., Walters, R.S., Grieves, G.A. & Duncan, M.A. 2004b. Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. Journal of Chemical Physics 121(21): 10498-10507.

Wan Isahak, W.N.R., Che Ramli, Z.A., Lahuri, A.H., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015. Enhancement of CO2 capture using CuO nanoparticles supported on green activated carbon. Advanced Materials Research 1087: 111-115.

Wang, Y.M., Kovacik, R., Meyer, B., Kotsis, K., Stodt, D., Staemmler, V., Qiu, H.S., Traeger, F., Langenberg, D., Muhler, M. & Woll, C. 2007. CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angewandte Chemie International Edition 46(29): 5624-5627.

Whateley, T.L. 1971. Carbonate species and not polywater formed on magnesium oxide. Nature Physical Science 231(25): 178-179.

Xing, X.P., Wang, G.J., Wang, C.X. & Zhou, M.F. 2013. Infrared photodissociation spectroscopy of Ti+(CO2)2Ar and Ti+(CO2)n (n=3-7) complexes. Chinese Journal of Chemical Physics 26(6): 687-693.

Yang, C.W.  & Woll, C. 2017. IR spectroscopy applied to metal oxide surfaces: Adsorbate vibrations and beyond. Advances in Physics X2(2): 373-408.

Yoshikawa, K., Sato, H., Kaneeda, M. & Kondo, J.N. 2014. Synthesis and analysis of CO2 adsorbents based on cerium oxide. Journal of CO2 Utilization 8: 34-38.

Yuan, Z.H. & Eden, M.R. 2016. Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Industrial & Engineering Chemistry Research 55(12): 3383-3419.

Zhang, Z.P., Rong, M.Z., Zhang, M.Q. & Yuan, C. 2013. Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymer. Polymer Chemistry 4(17): 4648-4654.

 

*Corresponding author; email: azizulhakim@upm.edu.my

 

       

 

previous