Sains
Malaysiana 51(2)(2022): 519-532
http://doi.org/10.17576/jsm-2022-5102-16
Synthesis and Characterization of
Metal Sulfates Loaded Palm Empty Fruit Bunch (PEFB) for Biodiesel Production
(Sintesis dan Pencirian Sulfat Logam
Dimuatkan Tandan Kosong Kelapa Sawit (PEFB) untuk Pengeluaran Biodiesel)
RAHILA ISHFAQ1*, NURUN
NAJWA RUSLAN1, NURSYAFREENA ATTAN2, SUZI SALWAH JIKAN1 & AMIRA SARYATI AMERUDDIN1
1Faculty of Applied Sciences and Technology, Universiti Tun
Hussein Onn Malaysia, 86400 Parit Raja, Johor Darul Takzim, Malaysia
2Faculty of Science, Universiti Teknologi Malaysia, 81310
UTM, Johor Darul Takzim, Malaysia
Received: 6 February 2021/Accepted:
28 May 2021
ABSTRACT
Biodiesel has been globally accepted
as a green substitute for diesel fuel. However, the insecurity of food raised
with the application of edible sources in biodiesel production has caused much
debate. The feasible alternative technique is the use of inedible and low-grade
sources such as palm fatty acid distillate (PFAD). In this work, the production
of biodiesel (FAME) from PFAD using solid acid catalysts (SACs) derived from
palm empty fruit bunch (PEFB) is investigated. The SACs were synthesized
through impregnation of different metal sulfate precursors, i.e. ferrous
sulfate heptahydrate (FeSO4.7H2O), copper sulfate
pentahydrate (CuSO4.5H2O), and magnesium sulfate
heptahydrate (MgSO4.7H2O) over PEFB. SEM-EDX observations
found that impregnation and then calcination resulted in attachment of sulfur
(S) and improved surface porosity. FT-IR analysis showed that there were
distinct interactions between metal sulfates and PEFB. XRD characterization
showed that the prepared catalysts have a crystalline structure. Besides, the
catalytic activity of the SACs was closely associated with their acid densities
measured by the titration method. Fe-PEFB catalyst showed the highest acid
density (2.44 mmol/g) among the catalysts studied. To study the effect of
process parameters on FFA conversion (%), optimization of methanol: PFAD molar
ratio, catalyst dosage, reaction temperature, and reaction time was conducted.
Maximum FFA conversion of 89.1% was obtained over Fe-PEFB while Cu-PEFB and
Mg-PEFB achieved an FFA conversion of 63 and 56.5%, respectively, under the
optimum reaction conditions. Thus, the present study offers a sustainable and
environmentally benign method for biodiesel production.
Keywords: Biodiesel; biomass waste;
esterification; impregnation; palm fatty acid distillate; solid acid catalysts
ABSTRAK
Biodiesel telah diterima secara
global sebagai pengganti hijau untuk bahan api diesel. Walau bagaimanapun,
ketidakamanan makanan yang dibangkitkan dengan penggunaan sumber yang boleh
dimakan dalam pengeluaran biodiesel telah menyebabkan banyak perdebatan. Teknik
alternatif yang boleh dilaksanakan ialah penggunaan sumber yang tidak boleh
dimakan dan bermutu rendah seperti sulingan asid lemak kelapa sawit (PFAD). Dalam kerja ini, pengeluaran
biodiesel (FAME) daripada PFAD menggunakan mangkin asid pepejal (SAC) yang
diperoleh daripada tandan kosong kelapa sawit (PEFB) telah dikaji. SAC telah
disintesis melalui penjejalan pelopor sulfat logam yang berbeza, iaitu, ferus
sulfat heptahidrat (FeSO4.7H2O), kuprum sulfat pentahidrat
(CuSO4.5H2O) dan magnesium sulfat heptahidrat (MgSO4.7H2O)
berbanding PEFB. Pemerhatian
SEM-EDX mendapati bahawa penjejalan dan kemudian pengkalsinan menghasilkan
perlekatan sulfur (S) dan liang permukaan bertambah baik. Analisis FT-IR
menunjukkan bahawa terdapat interaksi yang berbeza antara sulfat logam dan
PEFB. Pencirian XRD menunjukkan bahawa pemangkin yang disediakan mempunyai
struktur hablur. Selain
itu, aktiviti pemangkin SAC berkaitan dengan ketumpatan asid mereka yang diukur
dengan kaedah pentitratan. Mangkin Fe-PEFB menunjukkan ketumpatan asid
tertinggi (2.44 mmol/g) antara mangkin yang telah dikaji. Untuk mengkaji kesan
parameter proses terhadap penukaran FFA (%), pengoptimuman metanol:nisbah molar
PFAD, dos mangkin, suhu tindak balas dan masa tindak balas telah dijalankan. Penukaran FFA maksimum sebanyak
89.1% diperoleh berbanding Fe-PEFB manakala Cu-PEFB dan Mg-PEFB mencapai
penukaran FFA sebanyak 63 dan 56.5%, dalam keadaan tindak balas yang optimum.
Oleh itu, kajian ini menawarkan kaedah yang mampan dan jinak alam sekitar untuk
pengeluaran biodiesel.
Kata kunci: Biodiesel; mangkin asid
pepejal; pengesteran; penjejalan;
penyulingan asid lemak sawit; sisa biojisim
REFERENCES
Abdulkareem-Alsultan,
G., Asikin-Mijan, N., Mansir, N., Lee, H.V., Zainal, Z., Islam, A. &
Taufiq-Yap, Y.H. 2019. Pyro-lytic de-oxygenation of waste cooking oil for green
diesel production over Ag2O3-La2O3/AC
nano-catalyst. Journal of Analytical and Applied Pyrolysis 137: 171-184.
Akinfalabi, S.I.,
Rashid, U., Shean, T.Y.C., Nehdi, I.A., Sbihi, H.M. & Gewik, M.M. 2019.
Esterification of palm fatty acid distillate for biodiesel production catalyzed
by synthesized kenaf seed cake-based sulfonated catalyst. Catalysts 9(5): 482.
Akinfalabi, S.I.,
Rashid, U., Yunus, R. & Taufiq-Yap, Y.H. 2017. Synthesis of biodiesel from
palm fatty acid distillate using sulfonated palm seed cake catalyst. Renewable Energy 111: 611-619.
Alsultan, G.A.,
Asikin-Mijan, N., Lee, H., Albazzaz, A.S. & Taufiq-Yap, Y. 2017.
Deoxygenation of waste cooking to renewable diesel over walnut shell-derived
nanorode activated carbon supported CaO-La2O3 catalyst. Energy Conversion and Management 151:
311-323.
Ariza, M.J., Jones, D.J.
& Rozière, J. 2002. Role of post-sulfonation thermal treatment in
conducting and thermal properties of sulfuric acid sulfonated poly
(benzimidazole) membranes. Desalination 147(1-3) 183-189.
Arun, K., Batra, A.,
Krishna, A., Bhat, K., Aggarwal, M. & Francis, P.J. 2015. Surfactant free
hydrothermal synthesis of copper oxide nanoparticles. American Journal of Materials Science 5: 36-38.
Chai, M., Tu, Q., Lu, M.
& Yang, Y.J. 2014. Esterification pretreatment of free fatty acid in
biodiesel production, from laboratory to industry. Fuel Processing Technology 125: 106-113.
Chang, A.S., Sherazi,
S.T.H., Kandhro, A.A., Mahesar, S.A., Chang, F., Shah, S.N., Laghari, Z.H.
& Panhwar, T. 2016. Characterization of palm fatty acid distillate of
different oil processing industries of Pakistan. Journal of Oleo Science65(11):
897-901.
Chang, B., Fu, J., Tian,
Y. & Dong, X. 2013. Soft-template synthesis of sulfonated mesoporous carbon
with high catalytic activity for biodiesel production. RSC Advances 3(6): 1987-1994.
D'Souza, R., Vats, T.,
Chattree, A. & Siril, P.F. 2018. Graphene supported magnetically separable
solid acid catalyst for the single step conversion of waste cooking oil to
biodiesel. Renewable Energy 126:
1064-1073.
Dehkhoda, A.M., West,
A.H. & Ellis, N. 2010. Biochar based solid acid catalyst for biodiesel
production. Applied Catalysis A: General 382(2): 197-204.
Dong, T., Gao, D., Miao,
C., Yu, X., Degan, C., Garcia-Pérez, M., Rasco, B., Sablani, S.S. & Chen,
S. 2015. Two-step microalgal biodiesel production using acidic catalyst
generated from pyrolysis-derived bio-char. Energy
Conversion and Management 105: 1389-1396.
Ekmekyapar, A.,
Demirkıran, N., Künkül, A. & Aktaş, E. 2015. Leaching of
malachite ore in ammonium sulfate solutions and production of copper oxide. Brazilian Journal of Chemical Engineering 32: 155-165.
Encinar, J., González,
J., Martínez, G., Sánchez, N. & Pardal, A. 2012. Soybean oil
transesterification by the use of a microwave flow system. Fuel 95: 386-393.
Ezzah-Mahmudah, S.,
Lokman, I.M., Saiman, M.I. & Taufiq-Yap, Y.H. 2016. Synthesis and
characterization of Fe2O3/CaO derived from Anadara granosa for methyl ester
production. Energy Conversion and
Management 126: 124-131.
Flores, K.P., Omega,
J.L.O., Cabatingan, L.K., Go, A.W., Agapay, R.C. & Ju, Y.H. 2019.
Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid
catalyst for the esterification of oleic acid with methanol. Renewable Energy 130: 510-523.
Gapoor, A., Hassan, W.
& Sulong, M. 2002. Phytochemical for nutraceutical from the by product of
palm oil refining. Palm Oil Develop 36: 13-19.
González, M., Cea, M.,
Reyes, D., Romero-Hermoso, L., Hidalgo, P., Meier, S., Benito, N. & Navia,
R. 2017. Functionalization of biochar derived from lignocellulosic biomass
using microwave technology for catalytic application in biodiesel production. Energy Conversion and Management 137:
165-173.
Gowri Krishnan, S., Pua,
F.L., Palanisamy, K. & Nabihah, S. 2016. Preparation of oil palm EFB
derived solid acid catalyst for esterification reaction: Effect of
calcination temperature. Key Engineering
Materials 701: 117-121.
Guo, F., Xiu, Z.L. &
Liang, Z.X. 2012. Synthesis of biodiesel from acidified soybean soapstock using
a lignin-derived carbonaceous catalyst. Applied
Energy 98: 47-52.
Hayyan, A., Alam, M.Z.,
Mirghani, M.E., Kabbashi, N.A., Hakimi, N.I.N.M., Siran, Y.M. & Tahiruddin,
S. 2010. Sludge palm oil as a renewable raw material for biodiesel production
by two-step processes. Bioresource
Technology 101(20): 7804-7811.
Hoffmann, M.M. &
Conradi, M.S. 1998. Are there hydrogen bonds in supercritical methanol and
ethanol? The Journal of Physical
Chemistry B 102(1) 263-271.
Jacobson, K., Gopinath,
R., Meher, L.C. & Dalai, A.K. 2008. Solid acid catalyzed biodiesel
production from waste cooking oil. Applied
Catalysis B: Environmental 85(1-2): 86-91.
Ji, H., Lee, S., Park,
J., Kim, T., Choi, S. & Oh, M. 2018. Improvement in crystallinity and
porosity of poorly crystalline metal–organic frameworks (MOFs) through their
induced growth on a well-crystalline MOF template. Inorganic Chemistry 57(15): 9048-9054.
Knözinger, H. &
Kochloefl, K. 2000. Heterogeneous catalysis and solid catalysts. Ullmann's Encyclopedia of Industrial
Chemistry. United States: Wiley.
Lathiya, D.R., Bhatt,
D.V. & Maheria, K.C. 2018. Synthesis of sulfonated carbon catalyst from
waste orange peel for cost effective biodiesel production. Bioresource Technology Reports 2: 69-76.
Lee, D. 2013.
Preparation of a sulfonated carbonaceous material from lignosulfonate and its
usefulness as an esterification catalyst. Molecules 18(7): 8168-8180.
Liu, K., Wang, R. &
Yu, M. 2018. An efficient, recoverable solid base catalyst of magnetic bamboo
charcoal: Preparation,
characterization, and performance in biodiesel production. Renewable Energy 127: 531-538.
Lokman, I.M., Rashid,
U., Taufiq-Yap, Y.H. & Yunus, R. 2015. Methyl ester production from palm
fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy 81: 347-354.
Lokman, I.M., Rashid,
U., Zainal, Z., Yunus, R. & Taufiq-Yap, Y.H. 2014. Microwave-assisted
biodiesel production by esterification of palm fatty acid distillate. Journal of Oleo Science 63: 849-855.
Lotero, E., Liu, Y.,
Lopez, D.E., Suwannakarn, K., Bruce, D.A. & Goodwin, J.G. 2005. Synthesis
of biodiesel via acid catalysis. Industrial
& Engineering Chemistry Research 44(14): 5353-5363.
Malins, K., Brinks, J.,
Kampars, V. & Malina, I. 2016. Esterification of rapeseed oil fatty acids
using a carbon-based heterogeneous acid catalyst derived from cellulose. Applied Catalysis A: General 519:
99-106.
Marinković, D.M.,
Stanković, M.V., Veličković, A.V., Avramović, J.M.,
Miladinović, M.R., Stamenković, O.O., Veljković, V.B. &
Jovanović, D.M. 2016. Calcium oxide as a promising heterogeneous catalyst
for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews 56: 1387-1408.
Mengyu, G., Deng, P.,
Li, M., En, Y. & Jianbing, H. 2009. The kinetics of the esterification of
free fatty acids in waste cooking oil using Fe2(SO4)3/C
catalyst. Chinese Journal of Chemical
Engineering 17(1): 83-87.
Nakatani, N., Takamori,
H., Takeda, K. & Sakugawa, H. 2009. Transesterification of soybean oil
using combusted oyster shell waste as a catalyst. Bioresource Technology 100(3): 1510-1513.
Nautiyal, P.,
Subramanian, K. & Dastidar, M. 2014. Kinetic and thermodynamic studies on
biodiesel production from Spirulina
platensis algae biomass using single stage extraction–transesterification
process. Fuel 135: 228-234.
Okamura, M., Takagaki,
A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. & Hayashi, S.
2006. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in
amorphous carbon. Chemistry of Materials 18(13): 3039-3045.
Paul, A.K. 2018.
Synthesis, structure and topological analysis of glycine templated highly
stable cadmium sulfate framework: A new lewis acid catalyst. Journal of Molecular Structure 1157: 672-678.
Peng-Lim, B., Ganesan,
S., Maniam, G.P. & Khairuddean, M. 2012. Sequential conversion of high free
fatty acid oils into biodiesel using a new catalyst system. Energy 46(1): 132-139.
Ping, B.T.Y. &
Yusof, M. 2009. Characteristics and properties of fatty acid distillates from
palm oil. Oil Palm Bulletin 59: 5-11.
Rezaei, R., Mohadesi, M.
& Moradi, G. 2013. Optimization of biodiesel production using waste mussel
shell catalyst. Fuel 109: 534-541.
Sajab, M.S., Chia, C.H.,
Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S.
2011. Citric acid modified kenaf core fibres for removal of methylene blue from
aqueous solution. Bioresource Technology 102(15): 7237-7243.
Sharma, Y., Singh, B.
& Upadhyay, S. 2008. Advancements in development and characterization of
biodiesel: A review. Fuel 87: 2355-2373.
Shuit, S.H. & Tan,
S.H. 2014. Feasibility study of various sulphonation methods for transforming
carbon nanotubes into catalysts for the esterification of palm fatty acid
distillate. Energy Conversion and
Management 88: 1283-1289.
Sirisomboonchai, S.,
Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K. &
Abudula, A. 2015. Biodiesel production from waste cooking oil using calcined
scallop shell as catalyst. Energy
Conversion and Management 95: 242-247.
Soriano Jr., N.U.,
Venditti, R. & Argyropoulos, D.S. 2009. Biodiesel synthesis via homogeneous
lewis acid-catalyzed transesterification. Fuel 88(3): 560-565.
Su, F. & Guo, Y.
2014. Advancements in solid acid catalysts for biodiesel production. Green Chemistry 16(6): 2934-2957.
Sundar, S.,
Venkatachalam, G. & Kwon, S.J. 2018. Biosynthesis of copper oxide (CuO)
nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8(10): 823.
Supamathanon, N.,
Wittayakun, J. & Prayoonpokarach, S. 2011. Properties of Jatropha seed oil
from northeastern Thailand and its transesterification catalyzed by potassium
supported on NaY zeolite. Journal of
Industrial and Engineering Chemistry 17(2): 182-185.
Suppalakpanya, K.,
Ratanawilai, S. & Tongurai, C. 2010. Production of ethyl ester from
esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy 87(7): 2356-2359.
Takeshita, T., Ohnishi,
R. & Tanabe, K. 1974. Recent survey of catalysis by solid metal sulfates. Catalysis Reviews 8(1): 29-63.
Theivasanthi, T. &
Alagar, M. 2010. X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv:1003.6068.
Thushari, I. &
Babel, S. 2018a. Preparation of solid acid catalysts from waste biomass and
their application for microwave-assisted biodiesel production from waste palm
oil. Waste Management & Research 36(8): 719-728.
Thushari, P. &
Babel, S. 2018b. Biodiesel production from waste palm oil using palm empty
fruit bunch-derived novel carbon acid catalyst. Journal of Energy Resources Technology 140(3): 032204.
Uzun, B.B.,
Kılıç, M., Özbay, N., Pütün, A.E. & Pütün, E. 2012. Biodiesel
production from waste frying oils: Optimization of reaction parameters and determination of
fuel properties. Energy 44(1):
347-351.
Watanabe, Y., Shimada,
Y., Sugihara, A., Noda, H., Fukuda, H. & Tominaga, Y. 2000. Continuous
production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists'
Society 77(4): 355-360.
Xia, P., Liu, F., Wang,
C., Zuo, S. & Qi, C. 2012. Efficient mesoporous polymer based solid acid
with superior catalytic activities towards transesterification to biodiesel. Catalysis Communications 26: 140-143.
Xue, W., Sun, L., Yang,
F., Wang, Z. & Li, F. 2016. Peanut shell-derived carbon solid acid with
large surface area and its application for the catalytic hydrolysis of
cyclohexyl acetate. Materials 9(10):
833.
Yu, D., Tian, L., Wu,
H., Wang, S., Wang, Y., Ma, D. & Fang, X. 2010. Ultrasonic irradiation with
vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry 45(4): 519-525.
Yujaroen, D., Goto, M.,
Sasaki, M. & Shotipruk, A. 2009. Esterification of palm fatty acid
distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction
reactivity. Fuel 88(10): 2011-2016.
Zhang, J. & Jiang,
L. 2008. Acid-catalyzed esterification of Zanthoxylum
bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource Technology 99(18):
8995-8998.
Zhu, S., Chen, M., Ren,
W., Yang, J., Qu, S., Li, Z. & Diao, G. 2015. Microwave assisted synthesis
of α-Fe2O3/reduced graphene oxide as anode material
for high performance lithium ion batteries. New
Journal of Chemistry 39(10): 7923-7931.
Zong, M.H., Duan, Z.Q.,
Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and
its use for highly efficient production of biodiesel. Green Chemistry 9(5): 434-437.
*Corresponding
author; email: rahilanaz.ishfaq@gmail.com
|