Sains Malaysiana 51(2)(2022): 533-546

http://doi.org/10.17576/jsm-2022-5102-17

 

Green Synthesis of Nickle Oxide Nanoparticles for Adsorption of Dyes

(Sintesis Hijau Nanozarah Nikel Oksida untuk Penjerapan Pewarna)

 

ISRAA MUZAHEM RASHID*, SAMI DAWOD SALMAN, ALAA KAREEM MOHAMMED & YASMIN SALIH MAHDI

 

Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq

 

Received: 17 February 2021/Accepted: 12 June 2021

 

ABSTRACT

The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which has been found about 42 nm. The NiO-NPs have subsequently used as adsorbents for adsorption of two types of dyes; methylene blue (MB) as cation dye and methyl orange (MO) as anion dye. The removal efficiency of dyes from contaminated water was investigated during various key parameters at room temperature; initial dye concentration (Co), pH, contact time (t), agitation speed, and adsorbent dosage. The maximum removal of MB dye was found to be 96% (Co=25 mg/l, pH=10, contact time=100 min, agitation speed=300 rpm and adsorbent dosage=6 g/l), while for MO the maximum removal reached 88% at (Co=20 mg/L, pH=2, contact time=160 min, agitation speed=300 rpm and adsorbent dosage=6 g/L). The experimental adsorption data were found to well obey Freundlich isotherm. The kinetic investigation showed that the adsorption process for both dyes followed a pseudo-second-order model with rate constants 0.0109 and 0.0079 (mg/g min) for MB and MO, respectively.

 

Keywords: Adsorption; isotherm; kinetics; methyl orange; methylene blue; NiO nanoparticles; olive leaves

 

ABSTRAK

Sintesis hijau nanozarah nikel oksida (NiO-NP) telah dikaji menggunakan Ni(NO3)2 sebagai prakursor, daun pokok zaitun sebagai agen penurun dan D-sorbitol sebagai agen penutup. Struktur, optik dan morfologi NiO-NP yang disintesis telah dicirikan menggunakan analisis spektrofotometer ultralembayung-cahaya nampak (UV-Vis), pola pembelauan sinar-X (XRD), spektroskopi transformasi Fourier inframerah (FT-IR) dan mikroskop elektron imbasan (SEM). Analisis SEM menunjukkan bahawa nanozarah ini mempunyai bentuk sfera dan darjah hablur yang tinggi serta sangat beraglomerat dan ia hadir dalam gugusan dengan julat saiz daripada (30 hingga 65 nm). Hubungan Scherrer telah digunakan untuk anggaran saiz hablur NiO-NP yang telah dijumpai pada 42 nm. NiO-NP telah digunakan beberapa kali sebagai bahan penjerap untuk penjerapan dua jenis pewarna; metilena biru (MB) sebagai pewarna kation dan metil jingga (MO) sebagai pewarna anion. Kecekapan penyingkiran pewarna daripada air tercemar telah dikaji menggunakan beberapa parameter pada suhu bilik; permulaan kepekatan (Co) pewarna, pH, masa bertembung (t), kelajuan agitasi dan dos bahan penjerap. Penyingkiran pewarna MB maksimum yang telah dijumpai adalah 96% pada (Co=25 mg/l, pH=10, masa bertembung=100 min, kelajuan agitasi=300 rpm dan dos penjerap=6 g/l), manakala untuk MO nilai maksimum penyingkiran mencapai 88% pada (Co=20 mg/L, pH=2, masa bertembung=160 min, kelajuan agitasi=300 rpm and dos penjerap=6 g/L). Data uji kaji penjerap mendapati mengikuti model Freundlich. Kajian kinetik menunjukkan bahawa proses penjerapan untuk kedua-dua pewarna mengikuti model urutan kedua pseudo dengan kadar tetap 0.0109 dan 0.0079 (mg/g min) untuk masing-masing, iaitu MB dan MO.

 

Kata kunci: Daun zaitun; isoterma; kinetik; metilena biru; metil jingga; nanozarah NiO; penjerapan

 

REFERENCES

Abdulkareem, P.M. & Anwer, S.S. 2021. Uptake of different dyes by two new strains of microalgal dry biomass. Iraqi Journal of Agricultural Sciences 52(1): 48-62.

Al-Aoh, H.A. 2018. Adsorption performances of nickel oxide nanoparticles (NiO NPs) towards bromophenol blue dye (BB). Desalination and Water Treatment 110: 229-238.

Anandan, K. & Rajendran, V. 2011. Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Materials Science in Semiconductor Processing 14(1): 43-47.

Asratemedhin, B.H. & Mohammed, O. 2020. Plant extract mediated synthesis of nickel oxide nanoparticles. Progress in Materials Science 2(2): 0205-0209.

Barzinjy, A.A., Hamad, S.M., Esmaeel, M.M., Aydin, S.K. & Hussain, F.H. 2020. Biosynthesis and characterisation of zinc oxide nanoparticles from Punica granatum (pomegranate) juice extract and its application in thin films preparation by spin-coating method. Micro and Nano Letters 15(6): 415-420.

Basma, A.A., Raheem, J.M. & Nawras, J.J. 2017. Adsorption of mefenamic acid from water by bentonite poly urea formaldehyde composite adsorbent. Journal of Engineering 23(7): 50-73.

Bawazeer, S., Abdur, R., Syed, S., Uzair, A., Shawky, A.M., Al-Awthan, Y.S., Bahattab, O.S., Uddin, G., Sabir, J. & El-Esawi, M.A. 2021. Green synthesis of silver nanoparticles using Tropaeolum majus: Phytochemical screening and antibacterial studies. Green Processing and Synthesis 10(1): 85-94.

Chao, W., Dipali, S., Fengbo, T., Yuncai, L., Shudi Peng, Wei, S. & Qu, Z. 2015. Hydrothermal synthesis and structural characterization of NiO/SnO2 composites and hydrogen sensing properties. Journal of Spectroscopy 2015: Article ID. 450485.

El Shafey, A.M. 2020. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis 9(1): 304-339.

Elmorsi, T.M. 2011. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. Journal of Environmental Protection 2(6): 817-827.

El-Kemary, M., Nagy, N. & El-Mehasseb, I. 2013. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 16(6): 1747-1752.

Ezhilarasi, A.A., Vijava, J.J., Kaviyarasu, K. & Maaza, M.A. 2016.  Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Journal of Photochemistry and Photobiology B: Biology 164: 352-360.

Ezhilarasi, A.A., Judith, J.V. & Kaviyarasu, K. 2018. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology 180: 39-50.

Garb, D.S., Abu Baker, Y. & Suleiman, S. 2019. Nickel oxide (NiO) devices and applications: A review. International Journal of Engineering Research and Technology 8(4): 461-467.

Guechi, E.K. & Hamdaoui, O. 2016. Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: Equilibrium modelling, kinetic, and thermodynamic studies. Desalination and Water Treatment 57(22): 10270-10285.

Gulboy, A.N., Alaa, K.M. & Hasan, F.S. 2016. Biosynthesis and characterization of silver nanoparticles using olive leaves extract and sorbitol. Iraqi Journal of Biotechnology 15(1): 22-32.

Gulboy, A.N., Alaa, K.M. & Hasan, F.S. 2015. Effects of silver nanoparticles in liver function and oxidative stress levels. World Journal of Pharmaceutical Research 4(9): 2080-2089.

Hamdaoui, O. & Naffrechoux, E. 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part 1. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials 147: 381-394.

Han, D.Y., Wang, C.Q., Li, D.D. & Cao, Z.B. 2016. NiO/ZnO core-shell nanoparticles in situ synthesis via microemulsion method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46(5): 794-797.

Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L. & Zhang, Y. 2017. Modified bentonite adsorption of organic pollutants of dye wastewater. Material Chemistry and Physics 202: 266-276. 

Infantiya, S.G., Vinola, J. & Subramanian, D. 2020. Synthesis and characterization of nickel oxide nano particles by sol-gel technique. In AIP Conference Proceedings. AIP. 070017.

Javed, I., Ahsan, A., Tariq, M. & Safia, H. 2019. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Applied Organometallic Chemistry 33(8): 4950.

Jing, M., Wen, L., Shuyuan, Z., Zhe, M., Peishuai, S., Fuhua, Y. & Xiaodong, W. 2018. A thin film flexible super capacitor based on oblique angle deposited Ni/NiO nanowire arrays. Nanomaterials 8(422): 1-10.

Kamiya, H., Yoshio, O., Masayoshi, F. & Minoru, M. 2018. Characteristics and behavior of nanoparticles and its dispersion systems. In Nanoparticle Technology Handbook, edited by Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K. Amsterdam: Elsevier. pp. 109-168.

Kankeu, E.F.,  Waanders, F., Charissa, L.F. & Laurette, F. 2016. Adsorption of congo red by surfactant-impregnated bentonite clay. Desalination and Water Treatment 57(57): 27663-27671.

Khatem, R., Ojeda, R. & Bakhti, A. 2015. Use of synthetic clay for removal of diclofenac anti-inflammatory. Eurasian Journal of Soil Science 4(2): 1-11.

Khoshhesab, Z.M. & Ahmadi, M. 2016. Removal of reactive blue 19 from aqueous solutions using NiO nanoparticles: Equilibrium and kinetic studies. Desalination and Water Treatment 57(42): 20037-20048.

Kingsley, O.U., Freddie, L.I. & Andrew, C.E. 2018. Fabrication of affordable and sustainable solar cells using NiO/TiO2 P-N heterojunction. International Journal of Photoenergy 2018: Article ID. 6062390.

Kuang, Y., Xiaoping, Z. & Shaoqi, Z. 2020. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12(2): 587-606.

Kumar, P.V., Ahamed, A.J. & Karthikeyan, M. 2019. Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF‑7 cancer cell models. SN Applied Sciences 1(9): 1-5.

Lim, L.B.L. 2017. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry 10: S3216-S3228.

Lingaraju, K., Naika, H.R., Nagabhushana, H., Jayanna, K., Devaraja, S. & Nagaraju, G. 2020. Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arabian Journal of Chemistry 13(3): 4712-4719.

Mariam, A., Kashif, M. & Arokiyaraj, M. 2014. Bio-synthesis of NiO and Ni nanoparticles and their characterization. Digest Journal of Nanomaterials and Biostructures 9(3): 1007-1019.

Marzieh, R. & Rouhollah, H. 2014. Biosynthesis of silver nanoparticles using extract of olive leaf: Synthesis and in vitro cytotoxic effect on MCF-7 cells. Journal of Nanostructure in Chemistry 4(3): 112.

Miessya, W., Yoki, Y., Iman, A. & Dewangga, O.A. 2019. Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity. In IOP Conference Series: Materials Science and Engineering. IOP. 012077.

Nagaraj, B., Krishnamurthy, N.B., Liny, P., Divya, T.K. & Dinesh, R. 2011. Biosynthesis of gold nanoparticles of Ixora coccinea flower extract & their antimicrobial activities. International Journal of Pharma Bio Sciences 2(4): 557-565.

Nasseri, M.A., Ahrari, F. & Zakerinasab, B. 2016. A green biosynthesis of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application. Applied Organometallic Chemistry 30(12): 978-984.

Olajire, A.A. & Mohammed, A.A. 2020. Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Advanced Powder Technology 31(1): 211-218.

Pandian, C.J., Palanivel, R. & Dhananasekaran, S. 2015. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese Journal of Chemical Engineering 23(8): 1307-1315.

Parveen, K., Banse, V. & Ledwani, L. 2016. Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP Conference Proceedings. AIP. 020048.

Patel, K.J., Bhatt, G.G., Ray, J.R., Suryavanshi, P. & Panchal, C.J. 2017. All inorganic solid-state electrochromic devices: A review. Journal of Solid State Electrochemistry 21(2): 337-347.

Pelgrift, R.Y. & Friedman, A.J. 2013. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews 65(13-14): 1803-1815.

Pooja, K. & Dipali, S. 2017. Synthesis and characterization of nickel oxide nanoparticles by using co- precipitation method. International Journal of Advanced Research 5(5): 1333-1338.

Pooyandeh, S., Shahidi, S., Khajehnezhad, A. & Ghoranneviss, Z. 2020. Synthesizing and deposition of nickel oxide nanoparticles on glass mat using sol-gel method (morphological and magnetic properties). Journal of the Textile Institute 112(6): 887-895.

Priyadarshini, B., Rath, P.P., Behera, S.S., Panda, S.R., Sahoo, T.R. & Parhi, P.K. 2018. Kinetics, thermodynamics and isotherm studies on adsorption of eriochrome Black-T from aqueous solution using rutile TiO2. In IOP Conference Series: Materials Science and Engineering. IOP. 012051.

Rahdar, A., Aliahmad, M. & Azizi, Y. 2015. NiO nanoparticles: Synthesis and characterization. Journal of Nanostructure 5(2): 145-151.

Raval, N.P., Shah, P.U. & Shah, N.K. 2016. Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conservation Science and Engineering 1(1): 69-81.

Saiganesh, S., Krishnan, T. & Mallikarjuna, K. 2020. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules 10(1): 89.

Salvadori, M.R., Ando, R.A., Nascimento, C.A.O. & Corrêa, B. 2015. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS ONE 10(6): e0129799.

Serpil, S. & Mehmet, M.U. 2017. Adsorption of methylene blue and methyl orange by using waste ash. Journal of Natural and Applied Sciences 21(3): 831-835.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K. & Poinern, G.E.J. 2015. Green synthesis of metallic nanoparticles via biological entities. Materials 8(11): 7278-7308.

Sonea, B.T., Manikandana, E., Gurib-Fakima, A. & Maazaa, M. 2016. Single-phase α-Cr2O3 nanoparticles’ green synthesis using Callistemon viminalis red flower extract. Green Chemistry Letters and Reviews 9(2): 85-90.

Sun, Bo., Jing-Bing, L., Hao, W. & Hui, Y. 2017. Application of nickel oxide nanoparticles in electronic materials. Ionics 23: 1509-1515.

Thema, F.T., Manikandan, E. & Ameenah, G. 2016. Single phase bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. Journal of Alloys and Compounds 657: 655-661.

Zorkipli, N.N.M., Kaus, N.H.M. & Mohamad, A.A. 2016. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chemistry 19: 626-631.

 

*Corresponding author; email: sami.albayati@gmail.com

 

       

 

previous