Sains Malaysiana 51(2)(2022): 585-597
http://doi.org/10.17576/jsm-2022-5102-22
Impact Behaviour of Aluminum
Particles upon Aluminum, Magnesium, and Titanium Substrates using High Pressure
and Low-Pressure Cold Spray
(Kelakuan Kesan Zarah Aluminum ke atas Substrat Aluminum, Magnesium dan Titanium menggunakan Semburan Sejuk Tekanan Tinggi dan Tekanan Rendah)
ABREEZA MANAP1,2*,
SAVISHA MAHALINGAM1, SITI NURUL AKMAL YUSOF2, NURFANIZAN
AFANDI2 & HUDA ABDULLAH3
1Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
2Department of Mechanical Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN
43000 Kajang,
Selangor Darul Ehsan, Malaysia
3Department of Electrical, Electronic and System Engineering,
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 9 December 2020/Accepted:
18 July 2021
ABSTRACT
This study is focused on the impact
and residual stress behaviour of aluminum component repair using aluminum powder
via two different types of cold spray processes; high pressure cold spray
(HPCS) and low-pressure cold spray (LPCS). It has been carried out via smoothed
particle hydrodynamics simulations, comparing aluminum substrate with other
lightweight materials such as titanium and magnesium. The obtained results have
shown that the impact behaviour is influenced by velocity, porosity, deformation
behaviour, flattening ratio, total energy and maximum temperature. The aluminum
particles impacting on aluminum substrates using LPCS is slightly deformed,
with the smallest flattening ratio leading to less pore formation between the
particles. This has subsequently resulted in good coating quality. Furthermore,
HPCS has contributed greatly to the deposition of particles on the heavier and
harder substrate, such as titanium substrate. Thus, the overall result
indicates that LPCS is better for repairing aluminum component compared to
HPCS.
Keywords: Aluminum; high pressure
cold spray; impact behaviour; low-pressure cold spray; residual stress
ABSTRAK
Kajian ini difokuskan pada impak dan tingkah laku tekanan sisa pembaikan komponen aluminum menggunakan serbuk aluminum melalui dua jenis proses penyemburan sejuk; semburan sejuk tekanan tinggi (HPCS) dan semburan sejuk tekanan rendah (LPCS). Ia telah dilakukan melalui simulasi hidrodinamik zarah halus, membandingkan substrat aluminum dengan bahan ringan lain seperti titanium dan magnesium. Hasil yang diperoleh menunjukkan bahawa tingkah laku impak dipengaruhi oleh halaju, keliangan, tingkah laku ubah bentuk, nisbah meratakan, jumlah tenaga dan suhu maksimum. Zarah aluminum yang mempengaruhi substrat aluminum menggunakan LPCS sedikit cacat, dengan nisbah meratakan terkecil yang menyebabkan pembentukan liang antara zarah-zarah tersebut. Ini kemudiannya menghasilkan kualiti salutan yang baik. Tambahan pula, HPCS telah banyak menyumbang kepada pemendapan zarah pada substrat yang lebih berat dan keras, seperti substrat titanium. Oleh itu, hasil keseluruhan menunjukkan bahawa LPCS lebih baik untuk memperbaiki komponen aluminum berbanding HPCS.
Kata kunci: Aluminum; semburan sejuk tekanan tinggi; semburan sejuk tekanan rendah; tekanan sisa; tingkah laku impak
REFERENCES
Andreatta, F., Terryn,
H. & de Wit, J.H. 2004. Corrosion behaviour of
different tempers of aa7075 aluminium alloy. Electrochimica Acta 49(17-18): 2851-2862.
Attia, H., Meshreki,
M., Korashy, A., Thomson, V. & Chung, V. 2011.
Fretting wear characteristics of cold gas-dynamic sprayed aluminum alloys. Tribology International 44(11):
1407-1416.
Bahmani, A., Arthanari,
S. & Shin, K.S. 2019. Improved corrosion resistant and strength of a
magnesium aloy using multi-directional forging (MDF). International Journal of Advanced
Manufacturing Technology 105(1-4): 785-797.
Blindheim, J., Welo,
T. & Steinert, M. 2019. First demonstration of a new additive manufacturing
process based on metal extrusion and solid-state bonding. International Journal of Advanced Manufacturing Technology 105(5-6): 2523-2530.
Champagne, V. & Helfritch, D. 2016. The unique abilities of cold spray
deposition. International Materials
Reviews 61(7): 437-455.
Christoulis, D.K., Guetta, S., Guipont, V. & Jeandin, M.
2011. The influence of the substrate on the deposition of cold-sprayed
titanium: An experimental and numerical study. Journal of Thermal Spray Technology 20(3): 523-533.
Czerwinski, F. 2008. Magnesium Injection Molding. Boston:
Springer.
Dong, H. 2010. Surface Engineering of Light Alloys: Aluminium,
Magnesium and Titanium Alloys. New York: Woodhead Publishing Limited.
Dzhurinskiy, D., Maeva,
E., Leshchinsky, & Maev,
R.G. 2012. Corrosion protection of light alloys using low pressure cold spray. Journal of Thermal Spray Technology 21(2): 304-313.
Gao, P.H., Li, C.J., Yang, G.J., Li,
Y.G. & Li, C.X. 2008. Influence of substrate hardness on deposition
behavior of single porous WC-12Co particle in cold spraying. Surface and Coatings Technology 203(3-4): 384-390.
Ghelichi, R., Bagherifard,
S., MacDonald, D., Brochu, M., Jahed,
H., Jodoin, B. & Guagliano,
M. 2014. Fatigue strength of Al alloy
cold sprayed with nanocrystalline powders. International
Journal of Fatigue 65: 51-57.
Ghelichi, R., MacDonald, D., Bagherifard, S., Jahed, H., Guagliano, M. & Jodoin, B.
2012. Microstructure and fatigue behavior of cold spray coated Al5052. Acta Materialia 60(19): 6555-6561.
Gilmore, D.L., Dykhuizen,
R.C., Neiser, R.A., Roemer, T.J. & Smith, M.F.
1999. Particle velocity and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology 8(4):
576-582.
Houghton,
J.E.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, M. &
Johnson, C.A. 2001. Climate Change 2001: The Scientific Basis.
United Kingdom and New York: Cambridge University Press.
Jodoin, B., Ajdelsztajn,
L., Sansoucy, E., Zúñiga,
A., Richer, P. & Lavernia, E.J. 2006. Effect of
particle size, morphology, and hardness on cold gas dynamic sprayed aluminum
alloy coatings. Surface and Coatings
Technology 201(6): 3422-3429.
Kamaraj, M. & Radhakrishnan,
V.M. 2019. Cold spray coating diagram: bonding properties and construction
methodology. Journal of Thermal Spray
Technology 28(4): 756-768.
Lee, H., Shin, H., Le, S. & Ko,
K. 2008. Effect of gas pressure on Al coatings by cold gas dynamic spray. Materials Letters 62(10-11): 1579-1581.
Lee, J.C., Kang, H.J., Chu, W.S.
& Ahn, S.H. 2007. Repair of damaged mold surface
by cold-spray method. CIRP Annals 56(1): 577-580.
Luo, X.T., Li, C.X., Shang, F.L.,
Yang, G.J., Wang, Y.Y. & Li, C.J. 2014. High velocity impact induced
microstructure evolution during deposition of cold spray coatings: A review. Surface and Coatings Technology 254:
11-20.
Manap, A., Okabe, T., Ogawa, K., Mahalingam, S. & Abdullah,
H. 2019. Experimental and smoothed particle hydrodynamics analysis of
interfacial bonding between aluminum powder particles and aluminum substrate by
cold spray technique. International
Journal of Advanced Manufacturing Technology 103(9-12): 4519-4527.
Manap, A., Yusof, S.N., Afandi, N.F.
& Mahalingam, S. 2018. Impact behaviour of
lightweight metal component repair using aluminium particles with high pressure cold spray process and low-pressure cold spray
process. Proceedings of Mechanical
Engineering Research Day 2018: 57-58.
Manap, A., Yusof, S.N., Afandi, N.F.,
Mahalingam, S., Rosli, Z.M. & Ogawa, K. 2018.
Mechanical and wear properties of aluminium coatings
produced by high pressure and low-pressure cold sprayed processes. In Proceedings of Asia International Conference
on Tribology 2018. Malaysian Tribology Society. pp. 215-216.
Ning, X.J., Jang, J.H., Kim, H.J.,
Li, C.J. & Lee, C. 2008. Cold spraying of Al–Sn binary alloy: Coating
characteristics and particle bonding features. Surface and Coatings Technology 202(9): 1681-1687.
Novoselova, T., Fox, P., Morgan, R. &
O'Neill, W. 2006. Experimental study of titanium/aluminium deposits produced by cold gas dynamic spray. Surface and Coatings Technology 200(8): 2775-2783.
Ogawa, K., Ito, K., Ichimura, K., Ichikawa, Y., Ohno, S. & Onda, N. 2008. Characterization of low-pressure
cold-sprayed aluminum coatings. Journal
of Thermal Spray Technology 17(5-6): 728-735.
Saleh, M., Luzin,
V. & Spencer, K. 2014. Analysis of the residual stress and bonding
mechanism in the cold spray technique using experimental and numerical methods. Surface and Coatings Technology 252:
15-28.
Schmidt, T., Gärtner,
F., Assadi, H. & Kreye,
H. 2006. Development of a generalized parameter window for cold spray
deposition. Acta Materilia 54(3): 729-742.
Shayegan, G., Mahmoudi,
H., Ghelichi, R., Villafuerte, J., Wang, J., Guagliano, M. & Jahed, H.
2014. Residual stress induced by cold spray coating of magnesium AZ31B
extrusion. Materials & Design 60:
72-84.
Spencer, K., Luzin,
V., Matthews, N. & Zhang, M. 2012. Residual stresses in cold spray Al
coatings: The effect of alloying and of process parameters. Surface and Coatings Technology 206(19-20): 4249-4255.
Wong, W., Vo, P., Irissou, E., Ryabinin, A.N., Legoux, J.G. & Yue, S. 2013. Effect of particle
morphology and size distribution on cold-sprayed pure titanium coatings. Journal of Thermal Spray Technology 22(7): 1140-1153.
Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W. & Lupoi, R. 2018. Cold spray additive manufacturing and
repair: Fundamentals and applications. Additive
Manufacturing 21: 628-650.
Yin, S., Suo, X., Su, J., Guo, Z.,
Liao, H. & Wang, X. 2014. Effects of substrate hardness and spray angle on
the deposition behavior of cold-sprayed Ti particles. Journal of Thermal Spray Technology 23(1-2): 76-83.
Yin, S., Wang, X., Li, W., Lioa, H. & Jie, H. 2012.
Deformation behavior of the oxide film on the surface of cold sprayed powder
particle. Applied Surface Science 259: 294-300.
Yin, S., Wang, X., Li, W. & Xu,
B.P. 2009. Numerical investigation on effects of interactions between particles
on coating formation in cold spraying. Journal
of Thermal Spray Technology 18(4): 686.
Yusof, S.N.A., Manap,
A., Misran, H. & Othman, S.Z. 2014. Computational analysis of single and
multiple impacts of low pressure and high pressure cold sprayed aluminum
particles using SPH. Advanced Materials
Research 974: 147-151.
*Corresponding author; email: Abreeza@uniten.edu.my
|