Sains Malaysiana 51(2)(2022): 609-618

http://doi.org/10.17576/jsm-2022-5102-24

 

Intuitionistic Anti Fuzzy Normal Subrings over Normed Rings

(Subgelang Normal Kabur Anti Berintuisi terhadap Gelang Norma)

 

NOUR ABED ALHALEEM* & ABD GHAFUR AHMAD

 

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 8 March 2021/Accepted: 4 July 2021

 

ABSTRACT

In this paper, we initiate the notion of intuitionistic anti fuzzy normed normal subrings and generalize various related properties. We extend the notion of intuitionistic fuzzy normed subrings to intuitionistic anti fuzzy normed normal subrings. Further, we study the algebraic nature of direct product of intuitionistic anti fuzzy normed normal subrings and establish and examine some imperative properties of such products. We also provide some essential operations specially subset, complement and intersection relating to direct product of intuitionistic anti fuzzy normed normal subrings. Then, we generalize the relation between the intuitionistic characteristic function and direct product of intuitionistic anti fuzzy normed normal subrings.

 

Keywords: Direct product of intuitionistic anti fuzzy normed normal subrings; intuitionistic anti fuzzy normed normal subring; intuitionistic fuzzy normed normal subring

 

ABSTRAK

Dalam makalah ini, kami mempelopori tanggapan subgelang normal norma anti kabur berintuisi dan menyamaratakan pelbagai sifat berkaitan. Kami kembangkan tanggapan subgelang normal norma kabur berintuisi kepada subgelang normal norma anti kabur berintuisi. Seterusnya, kami mengkaji sifat aljabar bagi hasil darab langsung subgelang normal norma anti kabur berintuisi dan memantapkan serta mengkaji beberapa sifat penting hasil darab tersebut. Kami juga memberikan beberapa operasi asas terutamanya subset, pelengkap dan persilangan yang berkaitan dengan hasil darab langsung subgelang normal norma anti kabur berintuisi. Kemudian kami permudahkan hubungan antara fungsi cirian berintuisi dengan hasil darab langsung subgelang normal norma anti kabur berintuisi.

 

Kata kunci: Hasil darab langsung subgelang normal bernorma anti kabur berintuisi; subgelang normal bernorma anti kabur berintuisi; subgelang normal bernorma kabur berintuisi

 

REFERENCES

Abed Alhaleem, N. & Ahmad, A.G. 2021. Intuitionistic fuzzy normal subrings over normed rings. International Journal of Analysis and Applications 19(3): 341-359.

Abed Alhaleem, N. & Ahmad, A.G. 2020. Intuitionistic fuzzy normed subrings and intuitionistic fuzzy normed ideals. Mathematics 8(9): 1594.

Ahmad, M.Z. & Hasan, M.K. 2011a. Incorporating optimisation technique into Zadeh’s extension principle for computing non-monotone functions with fuzzy variable. Sains Malaysiana 40(6): 643-650.

Ahmad, M.Z. & Hasan, M.K. 2011b. A new fuzzy version of Euler’s method for solving differential equations with fuzzy initial values. Sains Malaysiana 40(6): 651-657.

Al-Masarwah, A. & Ahmad, A.G. 2020. Structures on doubt neutrosophic ideals of BCK/BCI-algebras under (S, T)-norms. Neutrosophic Sets and Systems 33(1): 275-289.

Alsarahead, M.O. & Ahmad, A.G. 2018. Complex intuitionistic fuzzy ideals. In AIP Conference Proceedings. AIP Publishing LLC. 1940(1): 020118.

Anitha, B. 2019. Properties of intuitionistic anti fuzzy normal subrings. Malaya Journal of

            Matematik 7(2): 304-308.

Atanassov, K.T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20(1): 87-96.

Azam, F.A., Mamun, A.A. & Nasrin, F. 2013. Anti fuzzy ideal of a ring. Annals of Fuzzy Mathematics and Informatics 5(2): 349-360.

Biswas, R. 1990. Fuzzy subgroups and anti fuzzy subgroups. Fuzzy Sets and Systems 35(1): 121-124.

Gupta, M.M. & Qi, J. 1991. Theory of T-norms and fuzzy inference methods. Fuzzy Sets and Systems 40(3): 431-450.

Kausar, N. 2019. Direct product of finite intuitionistic anti fuzzy normal subrings over non-associative rings. European Journal of Pure and Applied Mathematics 12(2): 622-648.

Li, D.Y., Zhang, C.Y. & Ma, S.Q. 2009. The intuitionistic anti-fuzzy subgroup in group G. In Fuzzy Information and Engineering, edited by Kacprzyk, J. Belin, Heidelberg: Springer-Verlag Berlin Heidelberg. pp. 145-151.

Liu, W.J. 1982. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems 8(2): 133-139.

Marashdeh, M.F. & Salleh, A.R. 2011. Intuitionistic fuzzy rings. International Journal of Algebra 5(1): 37-47.

Naimark, M.A. 1964. Normed Rings. Noordhoff, Groningen: American Mathematical Society. pp. 193-195.

Rasuli, R. 2019. Some results of anti fuzzy subrings over t-conorms. MathLAB Journal 4: 25-32.

Rosenfeld, A. 1971. Fuzzy groups. Journal of Mathematical Analysis and Applications 35(3): 512-517.

Sharma, P.K. & Bansal, V. 2012. On intuitionistic anti-fuzzy ideal in rings. International Journal of Mathematical Sciences 11(3-4): 237-243.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3): 338-353.

 

*Corresponding author; email: p102361@siswa.ukm.edu.my

 

       

 

previous