Sains Malaysiana 51(2)(2022): 609-618
http://doi.org/10.17576/jsm-2022-5102-24
Intuitionistic
Anti Fuzzy Normal Subrings over Normed Rings
(Subgelang Normal Kabur Anti Berintuisi terhadap Gelang Norma)
NOUR ABED ALHALEEM* & ABD GHAFUR AHMAD
Department of Mathematical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 8 March 2021/Accepted: 4 July 2021
ABSTRACT
In this paper, we initiate the notion of intuitionistic anti fuzzy normed normal subrings and generalize various related properties. We extend the notion of intuitionistic fuzzy normed subrings to intuitionistic anti fuzzy normed normal subrings. Further, we study the algebraic nature of direct product of intuitionistic anti fuzzy normed normal subrings and establish and examine some imperative properties of such products. We also provide some essential operations specially subset, complement and intersection relating to direct product of intuitionistic anti fuzzy normed normal subrings. Then, we generalize the relation between the intuitionistic characteristic function and direct product of intuitionistic anti fuzzy normed normal subrings.
Keywords: Direct product of intuitionistic anti fuzzy normed normal subrings; intuitionistic anti fuzzy normed normal subring; intuitionistic fuzzy normed normal subring
ABSTRAK
Dalam makalah ini, kami mempelopori tanggapan subgelang normal norma anti kabur berintuisi dan menyamaratakan pelbagai sifat berkaitan. Kami kembangkan tanggapan subgelang normal norma kabur berintuisi kepada subgelang normal norma anti kabur berintuisi. Seterusnya, kami mengkaji sifat aljabar bagi hasil darab langsung subgelang normal norma anti kabur berintuisi dan memantapkan serta mengkaji beberapa sifat penting hasil darab tersebut. Kami juga memberikan beberapa operasi asas terutamanya subset, pelengkap dan persilangan yang berkaitan dengan hasil darab langsung subgelang normal norma anti kabur berintuisi. Kemudian kami permudahkan hubungan antara fungsi cirian berintuisi dengan hasil darab langsung subgelang normal norma anti kabur berintuisi.
Kata kunci: Hasil darab langsung subgelang normal bernorma anti kabur berintuisi; subgelang normal bernorma anti kabur berintuisi; subgelang normal bernorma kabur berintuisi
REFERENCES
Abed Alhaleem, N.
& Ahmad, A.G. 2021. Intuitionistic fuzzy normal subrings over normed rings. International Journal of Analysis and
Applications 19(3): 341-359.
Abed Alhaleem, N.
& Ahmad, A.G. 2020. Intuitionistic fuzzy normed subrings and intuitionistic
fuzzy normed ideals. Mathematics 8(9): 1594.
Ahmad, M.Z. & Hasan, M.K. 2011a.
Incorporating optimisation technique into Zadeh’s extension principle for
computing non-monotone functions with fuzzy variable. Sains Malaysiana 40(6): 643-650.
Ahmad, M.Z. & Hasan, M.K. 2011b. A new fuzzy
version of Euler’s method for solving differential equations with fuzzy initial
values. Sains Malaysiana 40(6):
651-657.
Al-Masarwah, A. &
Ahmad, A.G. 2020. Structures on doubt neutrosophic ideals of BCK/BCI-algebras under (S, T)-norms. Neutrosophic Sets and Systems 33(1): 275-289.
Alsarahead,
M.O. & Ahmad, A.G. 2018. Complex intuitionistic fuzzy ideals. In AIP Conference Proceedings. AIP Publishing LLC. 1940(1): 020118.
Anitha, B. 2019. Properties of intuitionistic anti
fuzzy normal subrings. Malaya Journal of
Matematik 7(2): 304-308.
Atanassov, K.T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20(1): 87-96.
Azam, F.A., Mamun, A.A. & Nasrin, F. 2013. Anti fuzzy ideal of a ring. Annals of Fuzzy Mathematics and Informatics 5(2): 349-360.
Biswas, R. 1990. Fuzzy subgroups and anti fuzzy subgroups. Fuzzy
Sets and Systems 35(1): 121-124.
Gupta, M.M. & Qi, J. 1991. Theory of T-norms
and fuzzy inference methods. Fuzzy Sets
and Systems 40(3): 431-450.
Kausar, N. 2019. Direct product of finite
intuitionistic anti fuzzy normal subrings over non-associative rings. European Journal of Pure and Applied
Mathematics 12(2): 622-648.
Li, D.Y., Zhang, C.Y. & Ma, S.Q. 2009. The
intuitionistic anti-fuzzy subgroup in group G.
In Fuzzy Information and Engineering,
edited by Kacprzyk, J. Belin, Heidelberg:
Springer-Verlag Berlin Heidelberg. pp. 145-151.
Liu, W.J. 1982. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems 8(2): 133-139.
Marashdeh, M.F. & Salleh, A.R. 2011. Intuitionistic
fuzzy rings. International Journal of
Algebra 5(1): 37-47.
Naimark, M.A. 1964. Normed
Rings. Noordhoff, Groningen: American
Mathematical Society. pp. 193-195.
Rasuli, R. 2019. Some results of anti
fuzzy subrings over t-conorms. MathLAB Journal 4:
25-32.
Rosenfeld, A. 1971. Fuzzy groups. Journal of Mathematical Analysis and
Applications 35(3): 512-517.
Sharma, P.K. & Bansal, V. 2012. On
intuitionistic anti-fuzzy ideal in rings. International
Journal of Mathematical Sciences 11(3-4): 237-243.
Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3): 338-353.
*Corresponding
author; email: p102361@siswa.ukm.edu.my
|