Sains Malaysiana 51(3)(2022): 723-732
http://doi.org/10.17576/jsm-2022-5103-07
Oxidation of Lignin-Carbohydrate
Complex by Laccase/Co(salen) One-Pot Catalysis
(Pengoksidaan
Kompleks Lignin-Karbohidrat oleh Lakase/Co(salen) Pemangkinan Satu Periuk)
XUE-FEI ZHOU1,2,*
1Key Lab of Aromatic
Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, 644000 Yibin, China
2Faculty of Chemical Engineering, Kunming University of Science and
Technology, 650500 Kunming, China
Received:
20 April 2021/Accepted: 8 August 2021
Abstract
Lignin-carbohydrate complex (LCC) is
hybrid structures containing covalently linked moieties of lignin and
carbohydrates. The nature and amount of LCC affect both industrial processes
and practical applications of lignocellulosic biomass. Herein, the LCC was
isolated from bamboo by successive solvent extraction and
precipitation. The effects and mechanism of LCC oxidation respectively by
laccase, Co(salen), and laccase/Co(salen) in the presence of molecular oxygen have been
investigated by composition analysis using the standard of National Renewable
Energy Laboratory (NREL) and high-performance anion exchange chromatography
(HPAEC), GPC, FTIR, and 2D-HSQC NMR. We can conclude that the laccase/Co(salen) one-pot catalysis modified the LCC in such a way
that more carbohydrate was removed from the LCC with lower molecular weight of
LCC as shown by GPC; the catalytic treatments produced oxidation at lignin
side-chains and cleavage of lignin β-O-4', β-β' and β-5'
bonds in LCC, and cleavage of benzyl-sugar ether, phenyl glycoside and
γ-ester bonds in LCC, as shown by FTIR and 2D-HSQC NMR, especially after
the laccase/Co(salen) one-pot treatment. The further
insight of LCC degradation was discussed in light of the results obtained in
oxidation of the LCC model compound coniferin.
Keywords: Co(salen);
lignin-carbohydrate complex (LCC); one-pot catalysis, laccase; oxidation
Abstrak
Kompleks lignin-karbohidrat (LCC) ialah struktur
hibrid yang mengandungi gugusan lignin dan karbohidrat yang dikaitkan secara
kovalen. Sifat dan jumlah LCC mempengaruhi kedua-dua proses perindustrian dan
aplikasi praktikal biojisim lignoselulosa. Di sini, LCC telah diasingkan
daripada buluh melalui pengekstrakan dan pemendakan pelarut berturut-turut.
Kesan dan mekanisme pengoksidaan LCC masing-masing oleh lakase, Co(salen) dan
lakase/Co(salen) dengan kehadiran molekul oksigen telah dikaji melalui analisis
komposisi menggunakan piawaian National Renewable Energy Laboratory (NREL) dan
anion berprestasi tinggi. Kromatografi pertukaran (HPAEC), GPC, FTIR dan
2D-HSQC NMR. Kita boleh membuat kesimpulan bahawa pemangkinan satu pot
lakase/Co(salen) mengubah suai LCC dengan cara yang lebih banyak karbohidrat
dikeluarkan daripada LCC dengan berat molekul LCC yang lebih rendah seperti
yang ditunjukkan oleh GPC; rawatan pemangkin menghasilkan pengoksidaan pada
rantaian sisi lignin dan pembelahan ikatan lignin β-O-4', β-β'
dan β-5' dalam LCC dan pembelahan ikatan benzil-gula eter, fenil glikosida
dan γ-ester dalam LCC, seperti yang ditunjukkan oleh FTIR dan 2D-HSQC NMR,
terutamanya selepas rawatan satu pot lakase/Co(salen). Kajian lanjut tentang
degradasi LCC telah dibincangkan berdasarkan keputusan yang diperoleh dalam
pengoksidaan koniferin sebatian model LCC.
Kata kunci: Co(salen); kompleks
lignin-karbohidrat (LCC); pemangkinan satu periuk, lakase; pengoksidaan
REFERENCES
Abdelaziz, O.Y., Al-Rabiah,
A.A., El-Halwagi, M.M. & Hulteberg,
C.P. 2020. Conceptual design of a kraft lignin
biorefinery for the production of valuable chemicals via oxidative
depolymerization. ACS Sustainable Chemistry & Engineering 8(23): 8823-8829.
Ahmad,
N., Ahmad, N. & Ahmed,
U. 2020. Process design
and techno-economic evaluation for the production of platform chemical for
hydrocarbon fuels from lignocellulosic biomass using biomass-derived γ-valerolactone. Renewable
Energy 161: 750-755.
Azadi, P., Inderwildi,
O.R., Farnood, R. & King, D.A. 2013. Liquid fuels, hydrogen and chemicals
from lignin: A critical review. Renewable and Sustainable Energy Reviews 21: 506-523.
Calvo-Flores, F.G. & Dobado,
J.A. 2010. Lignin as renewable raw material. ChemSusChem 3: 1227-1235.
Carrozza, C.F., Papa, G., Citterio, A., Sebastiano,
R., Simmons,
B.A. & Singh,
S. 2019. One-pot
bio-derived ionic liquid conversion followed by hydrogenolysis reaction for
biomass valorization: A promising approach affecting the morphology and quality
of lignin of switchgrass and poplar. Bioresource
Technology 294: 122214. DOI: 10.1016/j.biortech.2019.122214.
Dai, J., Patti, A.F., Styles, G.N., Nanayakkara, S., Spiccia, L., Arena, F., Italiano, C. & Saito, K. 2019. Lignin
oxidation by MnO2 under the irradiation of blue light. Green Chemistry 21(8): 2005-2014.
Del Río, J., Prinsen, P., Cadena, E.M.,
Martinez, A.T., Gutierrez, A. & Rencoret, J.
2016. Lignincarbohydrate complexes from sisal (Agave sisalana)
and abaca (Musa textilis):
Chemical composition and structural modifications during the isolation process. Planta 243(5): 1143-1158.
Deshpande, R., Giummarella, N., Henriksson, G., Germgård, U., Sundvall, L., Grundberg, H. & Lawoko, M. 2018. The reactivity of
lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp
from softwood. Industrial Crops and Products 115: 315-322.
Díaz-Urrutia, C., Hurisso, B.B., Gauthier, P.M.P., Sedai, B., Singer,
R.D. & Baker, R.T. 2016. Catalytic aerobic oxidation of
lignin-derived bio-oils using oxovanadium and copper complex catalysts and
ionic liquids. Journal of Molecular Catalysis A:
Chemical 423: 414-422.
do Pim, W.D., Mendonca,
F.G., Brunet,
G., Facey,
G.A., Chevallier, F., Bucher,
C., Baker,
R.T. & Murugesu, M. 2021. Anion-dependent
catalytic C-C bond cleavage of a lignin model within a cationic metal-organic
framework. ACS Applied Materials &
Interfaces 13(1): 688-695.
Du, X., Li, J., Gellerstedt,
G., Rencoret, J., Del Río, J.C., Martínez, A.T. & Gutiérrez, A. 2013. Understanding pulp
delignification by laccase-mediator systems through isolation and
characterization of lignin-carbohydrate complexes. Biomacromolecules 14: 3073-3080.
Fernandes, M.R.C., Huang, X., Abbenhuis, H.C.L. & Hensen,
E.J.M. 2019. Lignin oxidation with an organic peroxide and subsequent aromatic
ring opening. International Journal of
Biological Macromolecules 123: 1044-1051.
Huang, J., Fu, S. & Gan, L. 2019. Structure
and characteristics of lignin. In Lignin Chemistry and Applications. Elsevier
Inc. pp. 25-50.
Huang, X., Zhang, X., Zhang, D., Yang, S., Feng,
X., Li, J., Lin, Z., Cao, J., Pan, R., Chi, Y., Wang, B. & Hu, C. 2014.
Binary Pd-Polyoxometalates and isolation of a ternary Pd-V-polyoxomolybdates active species for selective aerobic oxidation of alcohols. Chemistry-A European Journal 20: 2557-2564.
Katahira, R., Elder, T.J. &
Beckham, G.T. 2018. A brief introduction to lignin structure. In Lignin Valorization: Emerging Approaches, edited by Beckham, G.T. The Royal Society of Chemistry. pp. 1-20.
Kim, U.B., Jung, D.J., Jeon, H.J., Rathwell, K. & Lee, S-G. 2020. Synergistic dual
transition metal catalysis. Chemical Review 120(24): 13382-13433.
Lawoko, M. 2013. Unveiling the
structure and ultrastructure of lignin carbohydrate complexes in softwoods. International Journal of Biological
Macromolecules 62: 705-713.
Michniewicz, M., Jagiea, A. & Ledakowicz, S.
2007. Application of extended oxidation processes for degradation of lignin
compounds in pulp and paper effluents. Przeglad Papierniczy63(8): 483-486.
Nakagawa,
Y., Kasumi,
T., Ogihara, J., Tamura,
M., Arai, T. & Tomishige, K. 2020. Erythritol: Another C4
platform chemical in biomass refinery. ACS
Omega 5(6): 2520-2530.
Ng, C.K., Toh,
R.W., Lin, T.T., Luo, H-K., Hor, T.S.A. & Wu, J. 2019. Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for
cycloaddition of CO2 with epoxides under ambient conditions. Chemical Science 10(5): 1549-1554.
Penin, L., Gigli,
M., Sabuzi, F., Santos,
V., Galloni, P., Conte,
V., Parajo, J.C., Lange,
H. & Crestini, C. 2020. Biomimetic vanadate and
molybdate systems for oxidative upgrading of iono-
and organosolv hard- and softwood lignins. Processes 8(9): 1161. DOI:10.3390/pr8091161.
Qin, Z., Ma, Y-X., Liu, H-M., Qin, G-Y. & Wang, X-D.
2018. Structural elucidation of lignin-carbohydrate complexes (LCCs) from
Chinese quince (Chaenomeles sinensis)
fruit. International Journal of
Biological Macromolecules 116: 1240-1249.
Rajagopalan, B., Cai, H., Busch, D.H. & Subramaniam, B.
2008. The catalytic efficacy of Co(salen)(AL) in O2 oxidation reactions in CO2-expanded solvent media: Axial ligand
dependence and substrate selectivity. Catalysis Letters 123: 46-50.
Rawat,
S., Gupta, P., Singh, B., Bhaskar, T., Natte, K. & Narani, A. 2020. Molybdenum-catalyzed
oxidative depolymerization of alkali lignin: Selective production of vanillin. Applied Catalysis A: General 598(25). DOI:10.1016/j.apcata.2020.117567.
Ren,
X.K. & Fasan, R. 2020. Synergetic catalysis in an
artificial enzyme. Nature Catalysis 31:
184-185.
Richard, H.J. 2016. Biomimetic catalysis:
Taking on the turnover challenge. Nature Chemistry 8(3): 202-204.
Sette, M., Lange, H. & Crestini, C.
2013. Quantitative HSQC analyses of lignin: A practical comparison. Computational and Structural
Biotechnology Journal 6(7): e201303016.
Singh, R., Singh, S., Trimukhe, K.D., Pandare, K.V., Bastawade, K.B., Gokhale, D.V. & Varma, A.J. 2005. Lignin-carbohydrate
complexes from sugarcane bagasse: Preparation, purification, and
characterization. Carbohydrate Polymers 62(1): 57-66.
Sivagurunathan, P., Raj,
T., Mohanta, C.S., Semwal, S., Satlewal, A., Gupta,
R.P., Puri, S.K., Ramakumar, S.S.V. & Kumar,
R. 2021. 2G waste lignin to fuel and
high value-added chemicals: Approaches, challenges and future outlook for
sustainable development. Chemosphere 26: 129326. DOI:10.1016/j.chemosphere.2020.129326.
Sluiter,
A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. 2008. Determination of Structural Carbohydrates
and Lignin in Biomass. Technical Report for Laboratory Analytical Procedure
(LAP). Golden, CO, USA: NREL.
Steinmetz,
V., Villain-Gambier,
M., Klem, A., Gambier,
F., Dumarcay, S. & Trebouet, D. 2019. Unveiling TMP Process water
potential as an industrial sourcing of valuable lignin-carbohydrate complexes
toward zero-waste biorefineries. ACS Sustainable Chemistry & Engineering 7(6):
6390-6400.
Steinmetz,
V., Villain-Gambier,
M., Klem, A., Ziegler,
I., Dumarcay, S. & Trebouet, D. 2020. Lignin carbohydrate
complexes structure preserved throughout downstream processes for their valorization
after recovery from industrial process water. International Journal of Biological
Macromolecules 157: 726-733.
Sudarsanam, P., Ruijten, D., Liao, Y., Renders, T., Koelewijn, S-F. & Sels, B.F. 2020. Towards lignin-derived chemicals using atom-efficient catalytic
routes. Trends in Chemistry2(10): 898-913.
Suzuki,
S., Ishikuro, A., Hamano,
Y., Hirose,
D., Wada, N. & Takahashi,
K. 2020. Understanding and
suppression of side reaction during transesterification of phenolic hydroxyl
groups of lignin with vinyl ester. Chemistry Letters 49(8): 900-904.
Tarasov, D., Leitch, M. & Fatehi,
P. 2018. Lignin-carbohydrate complexes: Properties, applications, analyses, and
methods of extraction: A review. Biotechnology
for Biofuels 11: 269. DOI: 10.1186/s13068-018-1262-1.
Torres,
L.A.Z., Woiciechowski, A.L., Tanobe, V.O.D., Zandona, A., de
Freitas, R.A., Noseda, M.D., Szameitat, E.S., Faulds,
C., Coutinho,
P., Bertrand,
E. & Soccol, C.R. 2021. Lignin from oil palm empty
fruit bunches: Characterization, biological activities and application in green
synthesis of silver nanoparticles. International Journal of Biological
Macromolecules 167(15): 1499-1507.
Zhang, B., Fu, G.Q., Niu, Y.S.,
Peng, F., Yao, C.L. & Sun, R.C. 2016. Variations
of lignin-lignin and lignin-carbohydrate linkages from young Neosinocalamus affinisbamboo
culms. RSC Advances 6(19): 15478-15484.
Zhu, D., Liang, N., Zhang, R., Ahmad, F., Zhang, W., Yang,
B., Wu, J., Geng, A., Gabriel, M. & Sun, J. 2020.
Insight into depolymerization mechanism of bacterial laccase for lignin. ACS Sustainable Chemistry & Engineering 8(34): 12920-12933.
*Corresponding
author; email: lgdx602@sina.com
|