Sains Malaysiana 51(3)(2022): 747-756

http://doi.org/10.17576/jsm-2022-5103-09

 

Feasibility of Hydrogen Production from Cellulose and Prediction of the Product Distribution: Thermodynamics Analysis

(Kebolehlaksanaan Pengeluaran Hidrogen daripada Selulosa dan Ramalan Pengedaran Produk: Analisis Termodinamik)

 

DIDI DWI ANGGORO1,*, WIRDA UDAIBAH1,2, AJI PRASETYANINGRUM1 & ZAKI YAMANI ZAKARIA3

 

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Central Java, Indonesia

  2Department of Chemistry, Faculty of Science and Technology, UIN Walisongo, 50185, Semarang, Central Java, Indonesia

3School of Chemical Engineering, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

Received: 10 March 2021/Accepted: 13 August 2021

 

Abstract

High carbon emissions, depleting fossil energy reserves have become a global problem. It is necessary to develop renewable energy sources that are environmentally friendly. Hydrogen (H2) is one of the energy sources and carriers that can be developed. This gas can be produced from renewable, sustainable, and economical resource such as biomass that contains cellulose as the main ingredient. This thermodynamic analysis of H2 production from cellulose is necessary as a theoretical study to determine the feasibility of the reaction. The computational thermodynamic was analyzed using Microsoft Excel 2019 and Matlab Program R2013a. Prediction of the equilibrium composition of the substances involved in the reaction was attempted by minimization Gibbs free energy change with Lagrange undetermined multipliers methods. As a result, the value of ΔHr0; ΔSr0 and ΔGr0 are +624,7500 kJ/mol; +2,1491 kJ/mol.K and; -26,1540 kJ/mol, respectively. Analysis of equilibrium constant of this conversion has a large ln K value (> 1). A negative ΔGr0 value and large ln K indicates that the formation of H2 from (C6H10O5)n is plausible and feasible and reaction product formation is strongly favored at equilibrium. The composition of the substances involved at 298 K from the largest to the smallest is CH4 (4.5 mol), H2O (3 mol), CO2 (1.5 mol), H2 (1.28×10-5 mol), HCOOH (5.85×10-10 mol), C6H12O6 (3.72×10-10 mol) and C6H12O5 (1.35×10-10 mol). Interestingly, H2 yield will rise significantly with the increase of reaction temperature. This preliminary study provides an overview of reaction conditions so that H2 production from biomass can be produced maximally.

 

Keywords: Biomass; hydrogen; Lagrange multiplier; thermodynamic

 


 

Abstrak

Pelepasan karbon yang tinggi dan penurunan simpanan tenaga fosil telah menjadi masalah global. Oleh kerana itu, sumber tenaga boleh diperbaharui yang mesra alam perlu dibangunkan. Hidrogen (H2) adalah salah satu sumber tenaga dan pembawa tenaga yang dapat dikembangkan. Gas diatomik ini dapat dihasilkan daripada sumber yang boleh diperbaharui, lestari dan murah seperti biojisim yang mengandungi selulosa sebagai bahan utama. Analisis termodinamik bagi penghasilan H2 daripada selulosa diperlukan sebagai kajian teori untuk menentukan kebarangkalian tindak balas menggunakan kaedah perkiraan. Termodinamik komputasi dianalisis menggunakan Microsoft Excel 2016 dan Matlab Program R2013a. Ramalan komposisi keseimbangan bahan yang terlibat dalam percubaan tindak balas dengan meminimumkan perubahan tenaga bebas Gibbs dengan kaedah pengganda tidak ditentukan Lagrange. Hasilnya, nilai ΔHr0; ΔSr0 dan ΔGr0 masing-masing adalah +624,7500 kJ/mol; +2,1491 kJ/mol.K dan -26,1540 kJ/mol. Analisis pemalar keseimbangan penukaran ini mempunyai nilai ln K yang besar (> 1). Nilai ΔGr0 negatif dan ln K besar menunjukkan bahawa pembentukan H2 daripada (C6H10O5)n munasabah dan boleh dilaksanakan dan pembentukan produk reaksi cenderung terhasil pada titik keseimbangan. Komposisi produk yang terlibat pada suhu 298 K dari yang terbesar hingga yang terkecil adalah CH4 (4.5 mol), H2O (3 mol), CO2 (1.5 mol), H2 (1.28×10-5 mol), HCOOH (5.85×10-10 mol), C6H12O6 (3.72×10-10 mol) dan C6H12O5 (1.35×10-10 mol). Menariknya, pembentukan H2 meningkat dengan ketara seiring dengan peningkatan suhu tindak balas. Kajian teoritis awal ini memberikan gambaran umum dan pertimbangan keadaan reaksi sehingga produksi H2 daripada biojisim dapat dihasilkan secara maksimum.

 

Kata kunci: Biojisim; hidrogen; pengganda Lagrange; termodinamik

 

REFERENCES

Ahorsu, R., Medina, F. & Consstanti, M. 2018. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies 11(12): 3366. https://doi.org/10.3390/en11123366.

Bowker, M., Morton, C., Kennedy, J., Bahruji, H., Greves, J., Jones, W., Davies, P.R., Brookes, C., Wells, P.P. & Dimitratos, N. 2014. Hydrogen production by photoreforming of biofuels using Au, Pd and Au-Pd/TiO2 photocatalysts. Journal of Catalysis 310: 10-15. https://doi.org/10.1016/j.jcat.2013.04.005.

BP. 2020. Statistical Review of World Energy 2020. 69th ed. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

Chen, X., Guan, W., Tsang, C.W., Hu, H. & Liang, C. 2019. Lignin valorizations with Ni catalysts for renewable. Catalysts 9: 488. https://doi.org/10.3390/catal9060488.

Cheng, Y.W., Lee, Z.S., Chong, C.C., Khan, M.R., Cheng, C.K., Ng, K.H. & Hossain, Sk.S. 2019. Hydrogen-rich syngas production via steam reforming of palm oil mill effluent (POME) - A thermodynamics analysis. International Journal of Hydrogen Energy 44(37): 20711-20724. https://doi.org/10.1016/j.ijhydene.2018.05.119.

Danish & Ulucak, R. 2020. Linking biomass energy and CO2 emissions in China using dynamic autoregressive-distributed lag simulations. Journal of Cleaner Production 250: 119533. https://doi.org/10.1016/j.jclepro.2019.119533.

Dincer, I. & Zamfirescu, C. 2016. Sustainable Hydrogen Production. https://doi.org/10.1016/b978-0-444-64203-5.00001-0.

Hao, H., Zhang, L., Wang, W. & Zeng, S. 2018. Facile modification of Titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen. ChemSusChem 11(16): 2810-2817. https://doi.org/10.1002/cssc.201800743.

Hasliza Bahruji, Bowker, M., Davies, P.R. & Pedrono, F. 2011. New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B: Environmental 107(1-2): 205-209. https://doi.org/10.1016/j.apcatb.2011.07.015.

Hill Jr., C.G. & Root, T.W. 2014. Introduction to Chemical Engineering Kinetics & Reactor Design. 2nd ed. New Jersey: John Wiley & Sons, Inc.

Hua, J., Wang, K., Wang, Q. & Peng, R. 2020. Feasibility of Fe-based nitrogen carrier for chemical looping ammonia synthesis: Thermodynamics. Journal of Thermal Analysis and Calorimetry 146: 673-680. https://doi.org/10.1007/s10973-020-10029-x.

Huang, C.W., Nguyen, B.S., Wu, J.C.S. & Nguyen, V.H. 2020. A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy 45(36): 18144-18159. https://doi.org/10.1016/j.ijhydene.2019.08.121.

Khonde, R., Hedaoo, S. & Deshmukh, S. 2021. Prediction of product gas composition from biomass gasification by the method of Gibbs free energy minimization. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 43(3): 371-380. https://doi.org/10.1080/15567036.2019.1624890.

Koruba, D., Piotrowski, J.Z. & Latosińska, J. 2017. Biomass - Alternative renewable energy source to the fossil fuels. E3S Web of Conferences 14(March 2016): 1-10. https://doi.org/10.1051/e3sconf/20171402015.

Kuehnel, M.F. & Reisner, E. 2018. Solar hydrogen generation from lignocellulose Angewandte. pp. 3290-3296. https://doi.org/10.1002/anie.201710133.

Lan, L., Shao, Y., Jiao, Y., Zhang, R., Hardacre, C. & Fan, X. 2020. Systematic study of H2 production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO2. Chinese Journal of Chemical Engineering 28(8): 2084-2091. https://doi.org/10.1016/j.cjche.2020.03.030.

Megashah, L.N., Ariffin, H., Zakaria, M.R. & Hassan, M.A. 2018. Properties of cellulose extract from different types of oil palm biomass. IOP Conference Series: Materials Science and Engineering 368: 012049. https://doi.org/10.1088/1757-899X/368/1/012049.

Muhammad Tahir, William Mulewa, Nor Aishah Saidina Amin & Zaki Yamani Zakaria. 2017. Thermodynamic and experimental analysis on ethanol steam reforming for hydrogen production over Ni-Modified TiO2/MMT nanoclay catalyst. Energy Conversion and Management 154(May): 25-37. https://doi.org/10.1016/j.enconman.2017.10.042.

Nikolaidis, P. & Poullikkas, A. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67: 597-611. https://doi.org/10.1016/j.rser.2016.09.044.

Puga, A.V. 2016. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coordination Chemistry Reviews 315: 1-66. https://doi.org/http://dx.doi.org/doi:10.1016/j.ccr.2015.12.009.

Sehar Tasleem, Muhammad Tahir & Zaki Yamani Zakaria. 2020. Fabricating Structured 2D Ti3AlC2 MAX Dispersed TiO2 Heterostructure with Ni2P as a cocatalyst for efficient photocatalytic H2production. Journal of Alloys and Compounds 842: 155752. https://doi.org/10.1016/j.jallcom.2020.155752.

Sher, F., Iqbal, S.Z., Liu, H., Muhammad Imran & Snape, C.E. 2020. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management 203(September 2019): 112266. https://doi.org/10.1016/j.enconman.2019.112266.

Shimura, K. & Yoshida, H. 2011. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy and Environmental Science 4(7): 2467-2481. https://doi.org/10.1039/c1ee01120k.

Singh, R. & Dutta, S. 2018. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 220(February): 607-620. https://doi.org/10.1016/j.fuel.2018.02.068.

Smith, J.M., Van Ness, H.C., Abbott, M.M. & Swihart, M.T. 2018. Introduction to Chemical Engineering Thermodynamics. 8th ed. New York: McGraw Hill Education. https://doi.org/10.1021/ed027p584.3.

Speltini, A., Sturini, M., Dondi, D., Annovazzi, E., Maraschi, F., Caratto, V., Profumo, A. & Buttafava, A. 2014. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: A systematic study. Photochemical and Photobiological Sciences 13(10): 1410-1419. https://doi.org/10.1039/c4pp00128a.

Syaahidah Abdul Razak, Mahadi Abdul Hanif, Rosnah Abdullah, Hartini Mohd Yasin, Fairuzeta Ja’afar, Norizah Abdul Rahman & Hasliza Bahruji. 2020. Biohydrogen production from photodecomposition of various cellulosic biomass wastes using metal-TiO2 catalysts. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01164-4.

Takise, K. & Sekine, Y. 2019. Production, storage, utilization of hydrogen. Acc. Mater. Surf. Res.4(3): 115-134.

Tsanas, C., Stenby, E.H. & Yan, W. 2017. Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers. Chemical Engineering Science 174: 112-126. https://doi.org/10.1016/j.ces.2017.08.033.

Voitkevich, O.V., Kabo, G.J., Blokhin, A.V., Paulechka, Y.U. & Shishonok, M.V. 2012. Thermodynamic properties of plant biomass components. heat capacity, combustion energy, and gasification equilibria of lignin. Journal of Chemical and Engineering Data 57(7): 1903-1909. https://doi.org/10.1021/je2012814.

Zhang, G., Ni, C., Huang, X., Welgamage, A., Lawton, L.A., Robertson, P.K.J. & Irvine, J.T.S. 2016. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-Light photocatalysis. Chemical Communications 52(8): 1673-1676. https://doi.org/10.1039/c5cc09075j.

Zou, J., Zhang, G. & Xu, X. 2018. One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Applied Catalysis A: General 563: 73-79. https://doi.org/10.1016/j.apcata.2018.06.030.

 

*Corresponding author; email: dididwianggoro@lecturer.undip.ac.id

 

 

 

previous