Sains Malaysiana 51(3)(2022): 747-756
http://doi.org/10.17576/jsm-2022-5103-09
Feasibility of Hydrogen
Production from
Cellulose and
Prediction of the Product Distribution: Thermodynamics Analysis
(Kebolehlaksanaan Pengeluaran Hidrogen daripada Selulosa
dan Ramalan Pengedaran Produk:
Analisis Termodinamik)
DIDI DWI ANGGORO1,*, WIRDA UDAIBAH1,2,
AJI PRASETYANINGRUM1 & ZAKI YAMANI ZAKARIA3
1Department of Chemical
Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang,
Central Java, Indonesia
2Department of Chemistry,
Faculty of Science and Technology, UIN Walisongo, 50185, Semarang, Central
Java, Indonesia
3School of Chemical Engineering,
Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia
Received:
10 March 2021/Accepted: 13 August 2021
Abstract
High carbon emissions, depleting fossil energy reserves have
become a global problem. It is necessary to develop renewable energy sources
that are environmentally friendly. Hydrogen (H2) is one of the
energy sources and carriers that can be developed. This gas can be produced
from renewable, sustainable, and economical resource such as biomass that
contains cellulose as the main ingredient. This thermodynamic analysis of H2 production from cellulose is necessary as a theoretical study to determine the
feasibility of the reaction. The computational thermodynamic was analyzed using
Microsoft Excel 2019 and Matlab Program R2013a. Prediction of the equilibrium
composition of the substances involved in the reaction was attempted by
minimization Gibbs free energy change with Lagrange undetermined multipliers
methods. As a result, the value of ΔHr0; ΔSr0 and ΔGr0 are +624,7500 kJ/mol; +2,1491 kJ/mol.K and; -26,1540 kJ/mol, respectively. Analysis of
equilibrium constant of this conversion has a large ln K value (> 1). A
negative ΔGr0 value and large ln K indicates that
the formation of H2 from (C6H10O5)n is plausible and feasible and reaction
product formation is strongly favored at equilibrium. The composition of the
substances involved at 298 K from the largest to the smallest is CH4 (4.5 mol), H2O (3 mol), CO2 (1.5 mol), H2 (1.28×10-5 mol), HCOOH (5.85×10-10 mol), C6H12O6 (3.72×10-10 mol) and C6H12O5 (1.35×10-10 mol). Interestingly, H2 yield will rise significantly with the
increase of reaction temperature. This preliminary study provides an overview
of reaction conditions so that H2 production from biomass can be
produced maximally.
Keywords: Biomass; hydrogen; Lagrange multiplier; thermodynamic
Abstrak
Pelepasan karbon yang tinggi dan penurunan simpanan tenaga
fosil telah menjadi masalah global. Oleh kerana itu, sumber tenaga boleh
diperbaharui yang mesra alam perlu dibangunkan. Hidrogen (H2) adalah
salah satu sumber tenaga dan pembawa tenaga yang dapat dikembangkan. Gas
diatomik ini dapat dihasilkan daripada sumber yang boleh diperbaharui, lestari dan
murah seperti biojisim yang mengandungi selulosa sebagai bahan utama. Analisis
termodinamik bagi penghasilan H2 daripada selulosa diperlukan sebagai kajian teori untuk menentukan
kebarangkalian tindak balas menggunakan kaedah perkiraan. Termodinamik
komputasi dianalisis menggunakan Microsoft Excel 2016 dan Matlab Program
R2013a. Ramalan komposisi keseimbangan bahan yang terlibat dalam percubaan
tindak balas dengan meminimumkan perubahan tenaga bebas Gibbs dengan kaedah
pengganda tidak ditentukan Lagrange. Hasilnya, nilai ΔHr0;
ΔSr0 dan ΔGr0 masing-masing adalah +624,7500 kJ/mol; +2,1491 kJ/mol.K dan -26,1540 kJ/mol. Analisis pemalar keseimbangan penukaran ini mempunyai
nilai ln K yang besar (> 1). Nilai ΔGr0 negatif
dan ln K besar menunjukkan bahawa pembentukan H2 daripada (C6H10O5)n munasabah dan boleh dilaksanakan dan
pembentukan produk reaksi cenderung terhasil pada titik keseimbangan. Komposisi
produk yang terlibat pada suhu 298 K dari yang terbesar hingga yang terkecil
adalah CH4 (4.5 mol), H2O (3 mol), CO2 (1.5
mol), H2 (1.28×10-5 mol), HCOOH (5.85×10-10 mol),
C6H12O6 (3.72×10-10 mol) dan C6H12O5 (1.35×10-10 mol). Menariknya, pembentukan H2 meningkat dengan ketara seiring dengan peningkatan suhu tindak balas. Kajian
teoritis awal ini memberikan gambaran umum dan pertimbangan keadaan reaksi
sehingga produksi H2 daripada biojisim dapat dihasilkan secara maksimum.
Kata kunci: Biojisim; hidrogen; pengganda Lagrange; termodinamik
REFERENCES
Ahorsu,
R., Medina, F. & Consstanti, M. 2018. Significance and challenges of
biomass as a suitable feedstock for bioenergy and biochemical production: A
review. Energies 11(12): 3366.
https://doi.org/10.3390/en11123366.
Bowker,
M., Morton, C., Kennedy, J., Bahruji, H., Greves, J., Jones, W., Davies, P.R.,
Brookes, C., Wells, P.P. & Dimitratos, N. 2014. Hydrogen production by
photoreforming of biofuels using Au, Pd and Au-Pd/TiO2 photocatalysts. Journal of Catalysis 310: 10-15.
https://doi.org/10.1016/j.jcat.2013.04.005.
BP.
2020. Statistical Review of World Energy
2020. 69th ed. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.
Chen,
X., Guan, W., Tsang, C.W., Hu, H. & Liang, C. 2019. Lignin valorizations
with Ni catalysts for renewable. Catalysts 9: 488. https://doi.org/10.3390/catal9060488.
Cheng,
Y.W., Lee, Z.S., Chong, C.C., Khan, M.R., Cheng, C.K., Ng, K.H. & Hossain,
Sk.S. 2019. Hydrogen-rich syngas production via steam reforming of palm oil
mill effluent (POME) - A thermodynamics analysis. International Journal of Hydrogen Energy 44(37): 20711-20724.
https://doi.org/10.1016/j.ijhydene.2018.05.119.
Danish
& Ulucak, R. 2020. Linking biomass energy and CO2 emissions in
China using dynamic autoregressive-distributed lag simulations. Journal of Cleaner Production 250:
119533. https://doi.org/10.1016/j.jclepro.2019.119533.
Dincer,
I. & Zamfirescu, C. 2016. Sustainable
Hydrogen Production. https://doi.org/10.1016/b978-0-444-64203-5.00001-0.
Hao,
H., Zhang, L., Wang, W. & Zeng, S. 2018. Facile modification of Titania
with nickel sulfide and sulfate species for the photoreformation of cellulose
into hydrogen. ChemSusChem 11(16):
2810-2817. https://doi.org/10.1002/cssc.201800743.
Hasliza
Bahruji, Bowker, M., Davies, P.R. & Pedrono, F. 2011. New insights into the
mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B: Environmental 107(1-2): 205-209. https://doi.org/10.1016/j.apcatb.2011.07.015.
Hill
Jr., C.G. & Root, T.W. 2014. Introduction
to Chemical Engineering Kinetics & Reactor Design. 2nd ed. New Jersey:
John Wiley & Sons, Inc.
Hua,
J., Wang, K., Wang, Q. & Peng, R. 2020. Feasibility of Fe-based nitrogen
carrier for chemical looping ammonia synthesis: Thermodynamics. Journal of Thermal Analysis and Calorimetry 146: 673-680. https://doi.org/10.1007/s10973-020-10029-x.
Huang,
C.W., Nguyen, B.S., Wu, J.C.S. & Nguyen, V.H. 2020. A current perspective
for photocatalysis towards the hydrogen production from biomass-derived organic
substances and water. International
Journal of Hydrogen Energy 45(36): 18144-18159.
https://doi.org/10.1016/j.ijhydene.2019.08.121.
Khonde,
R., Hedaoo, S. & Deshmukh, S. 2021. Prediction of product gas composition
from biomass gasification by the method of Gibbs free energy minimization. Energy Sources, Part A: Recovery,
Utilization and Environmental Effects 43(3): 371-380.
https://doi.org/10.1080/15567036.2019.1624890.
Koruba,
D., Piotrowski, J.Z. & Latosińska, J. 2017. Biomass - Alternative
renewable energy source to the fossil fuels. E3S Web of Conferences 14(March 2016): 1-10.
https://doi.org/10.1051/e3sconf/20171402015.
Kuehnel,
M.F. & Reisner, E. 2018. Solar hydrogen generation from lignocellulose
Angewandte. pp. 3290-3296. https://doi.org/10.1002/anie.201710133.
Lan,
L., Shao, Y., Jiao, Y., Zhang, R., Hardacre, C. & Fan, X. 2020. Systematic
study of H2 production from catalytic photoreforming of cellulose
over Pt catalysts supported on TiO2. Chinese Journal of Chemical Engineering 28(8): 2084-2091.
https://doi.org/10.1016/j.cjche.2020.03.030.
Megashah,
L.N., Ariffin, H., Zakaria, M.R. & Hassan, M.A. 2018. Properties of
cellulose extract from different types of oil palm biomass. IOP Conference Series: Materials Science and
Engineering 368: 012049. https://doi.org/10.1088/1757-899X/368/1/012049.
Muhammad
Tahir, William Mulewa, Nor Aishah Saidina Amin & Zaki Yamani Zakaria. 2017.
Thermodynamic and experimental analysis on ethanol steam reforming for hydrogen
production over Ni-Modified TiO2/MMT nanoclay catalyst. Energy Conversion and Management 154(May): 25-37. https://doi.org/10.1016/j.enconman.2017.10.042.
Nikolaidis,
P. & Poullikkas, A. 2017. A comparative overview of hydrogen production
processes. Renewable and Sustainable
Energy Reviews 67: 597-611. https://doi.org/10.1016/j.rser.2016.09.044.
Puga,
A.V. 2016. Photocatalytic production of hydrogen from biomass-derived
feedstocks. Coordination Chemistry
Reviews 315: 1-66.
https://doi.org/http://dx.doi.org/doi:10.1016/j.ccr.2015.12.009.
Sehar Tasleem, Muhammad Tahir & Zaki
Yamani Zakaria. 2020. Fabricating Structured 2D Ti3AlC2 MAX Dispersed TiO2 Heterostructure with Ni2P as a
cocatalyst for efficient photocatalytic H2production. Journal of
Alloys and Compounds 842: 155752.
https://doi.org/10.1016/j.jallcom.2020.155752.
Sher,
F., Iqbal, S.Z., Liu, H., Muhammad Imran & Snape, C.E. 2020. Thermal and
kinetic analysis of diverse biomass fuels under different reaction environment:
A way forward to renewable energy sources. Energy
Conversion and Management 203(September 2019): 112266.
https://doi.org/10.1016/j.enconman.2019.112266.
Shimura,
K. & Yoshida, H. 2011. Heterogeneous photocatalytic hydrogen production
from water and biomass derivatives. Energy
and Environmental Science 4(7): 2467-2481.
https://doi.org/10.1039/c1ee01120k.
Singh,
R. & Dutta, S. 2018. A review on H2 production through
photocatalytic reactions using TiO2/TiO2-assisted
catalysts. Fuel 220(February):
607-620. https://doi.org/10.1016/j.fuel.2018.02.068.
Smith,
J.M., Van Ness, H.C., Abbott, M.M. & Swihart, M.T. 2018. Introduction to Chemical Engineering
Thermodynamics. 8th ed. New York: McGraw Hill Education.
https://doi.org/10.1021/ed027p584.3.
Speltini,
A., Sturini, M., Dondi, D., Annovazzi, E., Maraschi, F., Caratto, V., Profumo,
A. & Buttafava, A. 2014. Sunlight-promoted photocatalytic hydrogen gas
evolution from water-suspended cellulose: A systematic study. Photochemical and Photobiological Sciences 13(10): 1410-1419. https://doi.org/10.1039/c4pp00128a.
Syaahidah
Abdul Razak, Mahadi Abdul Hanif, Rosnah Abdullah, Hartini Mohd Yasin, Fairuzeta
Ja’afar, Norizah Abdul Rahman & Hasliza Bahruji. 2020. Biohydrogen
production from photodecomposition of various cellulosic biomass wastes using
metal-TiO2 catalysts. Biomass
Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01164-4.
Takise,
K. & Sekine, Y. 2019. Production, storage, utilization of hydrogen. Acc.
Mater. Surf. Res.4(3):
115-134.
Tsanas,
C., Stenby, E.H.
& Yan, W. 2017. Calculation of simultaneous chemical and phase
equilibrium by the method of Lagrange
multipliers. Chemical Engineering Science 174: 112-126.
https://doi.org/10.1016/j.ces.2017.08.033.
Voitkevich,
O.V., Kabo, G.J., Blokhin, A.V., Paulechka, Y.U. & Shishonok, M.V. 2012. Thermodynamic properties of plant biomass
components. heat capacity, combustion energy, and gasification equilibria of
lignin. Journal of Chemical and
Engineering Data 57(7): 1903-1909.
https://doi.org/10.1021/je2012814.
Zhang,
G., Ni, C., Huang, X., Welgamage, A., Lawton, L.A., Robertson, P.K.J. & Irvine, J.T.S. 2016. Simultaneous cellulose
conversion and hydrogen production assisted by cellulose decomposition under
UV-Light photocatalysis. Chemical Communications 52(8): 1673-1676. https://doi.org/10.1039/c5cc09075j.
Zou, J., Zhang, G. & Xu, X. 2018. One-pot photoreforming of cellulosic biomass waste to
hydrogen by merging photocatalysis with acid hydrolysis. Applied Catalysis A: General 563: 73-79.
https://doi.org/10.1016/j.apcata.2018.06.030.
*Corresponding author; email:
dididwianggoro@lecturer.undip.ac.id
|